
Dezember 2009DEUTSCHE NORM Entwurf

DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE

Preisgruppe 41DIN Deutsches Institut für Normung e.V. · Jede Art der Vervielfältigung, auch auszugsweise,
nur mit Genehmigung des DIN Deutsches Institut für Normung e.V., Berlin, gestattet.

ICS 35.080

Dieser Norm-Entwurf mit Erscheinungsdatum 2009-12-14 wird der Öffentlichkeit zur Prüfung und
Stellungnahme vorgelegt.

Weil die beabsichtigte Norm von der vorliegenden Fassung abweichen kann, ist die Anwendung dieses
Entwurfes besonders zu vereinbaren.

Stellungnahmen werden erbeten

Anwendungswarnvermerk

!$[NM"
1564342

www.din.de

D

– vorzugsweise als Datei per E-Mail an dke@din.de in Form einer Tabelle. Die Vorlage dieser Tabelle kann
im Internet unter www.dke.de/stellungnahme abgerufen werden;

– oder in Papierform an die DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im
DIN und VDE (Hausanschrift: Stresemannallee 15, 60596 Frankfurt am Main).

 Entwurf

DIN IEC 61131-3

Speicherprogrammierbare Steuerungen –
Teil 3: Programmiersprachen;

Englische Fassung (IEC 65B/725/CD:2009)

Programmable Controllers –
Part 3: Programming languages;
English version (IEC 65B/725/CD:2009)

©

Alleinverkauf der Normen durch Beuth Verlag GmbH, 10772 Berlin

Einsprüche bis 2010-02-28
Vorgesehen als Ersatz für
DIN EN 61131-3:2003-12 und
DIN EN 61131-3 Beiblatt 1:2005-04

www.beuth.de

Gesamtumfang 185 Seiten

Die Empfänger dieses Norm-Entwurfs werden gebeten, mit ihren Kommentaren jegliche relevante
Patentrechte, die sie kennen, mitzuteilen und unterstützende Dokumentationen zur Verfügung zu stellen.

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

E DIN IEC 61131-3:2009-12

2

Nationales Vorwort

Die englische Originalfassung des internationalen Dokuments IEC 65B/725/CD:2009 „Programmable
Controllers – Part 3: Programming languages“ (CD, en: Committee Draft) ist unverändert in diesen Norm-
Entwurf übernommen worden.

Das internationale Dokument wurde vom SC 65B „Devices“ der Internationalen Elektrotechnischen
Kommission (IEC) erarbeitet und den nationalen Komitees zur Stellungnahme vorgelegt.

Die IEC und das Europäische Komitee für Elektrotechnische Normung (CENELEC) haben vereinbart, dass
ein auf IEC-Ebene erarbeiteter Entwurf für eine Internationale Norm zeitgleich (parallel) bei IEC und
CENELEC zur Umfrage (CDV-Stadium) und Abstimmung als FDIS (en: Final Draft International Standard)
bzw. Schluss-Entwurf für eine Europäische Norm gestellt wird, um eine Beschleunigung und Straffung der
Normungsarbeit zu erreichen. Dokumente, die bei CENELEC als Europäische Norm angenommen und
ratifiziert werden, sind unverändert als Deutsche Normen zu übernehmen.

Es ist vorgesehen, auch bei der entsprechenden zukünftigen Deutschen Norm auf die deutsche Sprach-
fassung zu verzichten und diese in der englischsprachigen Fassung zu veröffentlichen.

Da der Abstimmungszeitraum für einen FDIS bzw. Schluss-Entwurf prEN nur 2 Monate beträgt, und dann
keine sachlichen Stellungnahmen mehr abgegeben werden können, sondern nur noch eine „JA/NEIN“-
Entscheidung möglich ist, wobei eine „NEIN“-Entscheidung fundiert begründet werden muss, wird bereits der
CD als DIN-Norm-Entwurf veröffentlicht, um die Stellungnahmen aus der Öffentlichkeit frühzeitig
berücksichtigen zu können.

Für diesen vorliegenden Norm-Entwurf ist das nationale Arbeitsgremium K 962 „SPS“ der DKE Deutsche
Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE (www.dke.de) zuständig.

Da sich die Benutzer des vorliegenden Norm-Entwurfs der englischen Sprache als Fachsprache bedienen,
wird die Englische Fassung der EN 61131-3 veröffentlicht. Für die meisten der verwendeten Begriffe
existieren keine gebräuchlichen deutschen Benennungen, da sich die deutschen Anwender in der Regel
ebenfalls der englischen Benennungen bedienen. Dieser Norm-Entwurf steht nicht in unmittelbarem
Zusammenhang mit Rechtsvorschriften und ist nicht als Sicherheitsnorm anzusehen.

Das Präsidium des DIN hat mit Präsidialbeschluss 1/2004 festgelegt, dass DIN-Normen, deren Inhalt sich auf
internationale Arbeitsergebnisse der Informationsverarbeitung gründet, unter bestimmten Bedingungen allein
in englischer Sprache veröffentlicht werden dürfen. Diese Bedingungen sind für die vorliegende Norm erfüllt.

Für den Fall einer undatierten Verweisung im normativen Text (Verweisung auf eine Norm ohne Angabe des
Ausgabedatums und ohne Hinweis auf eine Abschnittsnummer, eine Tabelle, ein Bild usw.) bezieht sich die
Verweisung auf die jeweils neueste gültige Ausgabe der in Bezug genommenen Norm.

Für den Fall einer datierten Verweisung im normativen Text bezieht sich die Verweisung immer auf die in
Bezug genommene Ausgabe der Norm.

Der Zusammenhang der zitierten Normen mit den entsprechenden Deutschen Normen ergibt sich, soweit ein
Zusammenhang besteht, grundsätzlich über die Nummer der entsprechenden IEC-Publikation. Beispiel:
IEC 60068 ist als EN 60068 als Europäische Norm durch CENELEC übernommen und als DIN EN 60068 ins
Deutsche Normenwerk aufgenommen.

Änderungen

Gegenüber DIN EN 61131-3:2003-12 und DIN EN 61131-3 Bbl 1:2005-04 wurden folgende Änderungen
vorgenommen:

a) Einführung objektorientierter Techniken;

b) siehe Angaben auf Seite 2 und 3 des IEC-Schriftstücks.

��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Changes to 2nd Edition: 1

1. Error corrections and editorial changes (numbering of clauses, tables, figures): 2
All done in the first CD/65B/672. 3

2. The following table gives an overview of the major changes of the 3rd Edition. 4

3. All essential changes to 2nd Edition are in blue writing. 5

[Editor’s note: - Notes like this marked yellow are temporarly for this 2CD only] 6

— 2 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Overview of major changes: 7

[Editor’s note: This list is not complete; clause numbering is not yet correct.] 8

Clause
(link)

Title Changes

all FB Clarify: Always distinguish instance or type

 3 Terms and definitions New: Some definitions

 6.1.5 Comments New: Single line comment. // text

 6.2.1 Numeric literals … New: INT#16#7FFF = decimal value 32767

 6.3.3 Generic data type Corr: Fig. 4 – Hierarchy of ..

 6.3.4.2
et seq.

Derived data type – Decl.
- Initialization
- Usage

New: STRUCTURE, ARRAY with
- explicit layout of memory and endieness using AT
- Keyword OVERLAP.
- Packed ARRAYS

 6.4.2.3 Partial Access of ANY_BIT e.g. <variable name> .X0 to <variable name> .X7
 6.4.2.5 Variable-length array New: ARRAY [* , * ,*] OF INT;

Std FBs for upper und lower bound

 6.4.4.1 Declaration – Type assignment Del: Declaration of directly represented variables:
AT %IW6.2 : WORD; see Table 20

 0 Initial value assignment New: Constant expression: 2*pi/2

 6.5.2.1 Function - General Clar: Results: VAR_EXTERNAL, VAR_IN_OUT
New: Keyword VOID

 6.5.2.5.2 Typed overloading Corr: WORD_TO_INT vs. TO_INT

Et seq. Type conversion New: Table 28 – Implicit and explicit conversion
 Explicitly typed or overloaded . New: Examples in tables

 Implicit type conversion New/Clar: Example

 6.5.2.6.2 Type conversion function New: TRUNC vs. TRUNC_**

 6.5.3.1 Function block - General Clar: ..
New: Error if no value specified for parameters in-out and func-
tion block instance

 6.5.3.4 Function block - Declaration New: Table 40#12 - Function block result and examples

 6.5.3.5.2 Standard function blocks
– Bistable elements

New: additionally long name
SR SET1, RESET, … vs. S1, R, …

 6.5.3.5.4 Counters Del: long input names: LOAD, RESET

 6.5.4 Object Oriented extentions of FB
concept

Editors note: Hybrid FB (with and without OO) as option !

Et seq. Methods – General, declaration New: method = procedure (like a function) for a FB (type)

 Interfaces New: Method prototypes, IMPLEMENTS, Representation, poly-
morphism, ABSTRACT, …

 Inheritance New:

 THIS/SUPER New:

 6.6.5 SFC – Evaluation rules Corr: Simult. seq. – divergence and convergence

 6.8 Namespaces New: NAMESPACE, INTERNAL ACCESS, PUBLIC ACCESS

 8.2.6 Instruction List (IL) New: FB call – Counter RESET (Long name)

 7.3.2 Structured Text (ST) New: Statements: “;“, CONTINUE (see also example)

 8.2.4 Ladder Diagram (LD) New: Contacts for Compare (typed and overloaded)

Annex B Formal spec of language elements New: various new elements:

Ex
Annex F

Examples Del: Move to next edition of part 8 - Guidelines

Ex
Annex H

Interoperability with IEC 61499 de-
vices

Deleted

— 3 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

CONTENTS 9
 10
1 Scope ...13 11
2 Normative references ...13 12
3 Terms and definitions ...14 13
4 Architectural models ...21 14

4.1 Software model ...21 15
4.2 Communication model ...23 16
4.3 Programming model ..23 17

5 Compliance ..25 18
5.1 System compliance ...25 19
5.2 Program compliance..27 20

6 Common elements ..27 21
6.1 Use of printed characters ..27 22

6.1.1 Character set ...27 23
6.1.2 Identifiers ..27 24
6.1.3 Keywords...28 25
6.1.4 Use of white space ..28 26
6.1.5 Comments ...28 27
6.1.6 Pragma..29 28

6.2 External representation of data..29 29
6.2.1 Numeric literals and bit string literals ...29 30
6.2.2 Character string literals ...30 31
6.2.3 Time literals ...32 32

6.2.3.1 General ...32 33
6.2.3.2 Duration ..32 34
6.2.3.3 Time of day and date ..32 35

6.3 Data types ...33 36
6.3.1 General ...33 37
6.3.2 Elementary data types ...33 38
6.3.3 Generic data types ..34 39
6.3.4 Derived data types...35 40

6.3.4.1 General ...35 41
6.3.4.2 Declaration ...35 42
6.3.4.3 Initialization...37 43
6.3.4.4 Usage of TYPE ..39 44

6.4 Variables ...40 45
6.4.1 General ...40 46
6.4.2 Representation ..40 47

6.4.2.1 General ...40 48
6.4.2.2 Single-element variables ...40 49
6.4.2.3 Partial access of ANY_BIT variables ..41 50
6.4.2.4 Multi-element variables ...42 51
6.4.2.5 Variable-length arrays ...43 52

6.4.3 Initialization ...45 53
6.4.4 Declaration ..45 54

6.4.4.1 Type assignment ...47 55
6.4.4.2 Initial value assignment ...49 56

— 4 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

6.5 Program organization units ..51 57
6.5.1 General ...51 58
6.5.2 Functions...51 59

6.5.2.1 General ...51 60
6.5.2.2 Representation..52 61
6.5.2.3 Execution control using EN and ENO ..55 62
6.5.2.4 Declaration ...56 63
6.5.2.5 Typing, overloading, and type conversion....................................59 64

6.5.2.5.1 Generic Overloading ..59 65
6.5.2.5.2 Typed overloading ...59 66
6.5.2.5.3 Type conversion ..60 67
6.5.2.5.4 Explicitly typed or overloaded type conversion61 68
6.5.2.5.5 Implicit and explicit type conversion62 69

6.5.2.6 Standard functions ..63 70
6.5.2.6.1 General..63 71
6.5.2.6.2 Type conversion functions ...64 72
6.5.2.6.3 Numerical functions ...66 73
6.5.2.6.4 Bit string functions ...67 74
6.5.2.6.5 Selection and comparison functions69 75
6.5.2.6.6 Character string functions ..71 76
6.5.2.6.7 Functions of time data types72 77
6.5.2.6.8 Functions of enumerated data types74 78

6.5.3 Function blocks ...74 79
6.5.3.1 General ...74 80
6.5.3.2 Representation..75 81
6.5.3.3 Execution control using EN and ENO ...76 82
6.5.3.4 Declaration ...77 83
6.5.3.5 Standard function blocks ...84 84

6.5.3.5.1 General..84 85
6.5.3.5.2 Bistable elements ..85 86
6.5.3.5.3 Edge detection...85 87
6.5.3.5.4 Counters ..86 88
6.5.3.5.5 Timers ...88 89
6.5.3.5.6 Communication function blocks89 90

6.5.4 Object oriented extensions to the function block concept90 91
6.5.4.1 General ...90 92
6.5.4.2 Methods in function blocks ..91 93

6.5.4.2.1 General..91 94
6.5.4.2.2 Method declaration ..91 95
6.5.4.2.3 Method call ..93 96
6.5.4.2.4 Access specifiers of method (Public, 97

Private, Internal, Protected)94 98
6.5.4.3 Interface ...95 99

6.5.4.3.1 General..95 100
6.5.4.3.2 Method prototype ...96 101
6.5.4.3.3 IMPLEMENTS..96 102

6.5.4.4 Inheritance ..99 103
6.5.4.4.1 General..99 104

— 5 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

6.5.4.4.2 Function block inheritance (EXTENDS, 105
OVERRIDE) ..100 106

6.5.4.4.3 Interface inheritance (EXTENDS)102 107
6.5.4.4.4 Name Binding ..103 108
6.5.4.4.5 Access reference (THIS/SUPER)103 109
6.5.4.4.6 Polymorphism ..104 110
6.5.4.4.7 ABSTRACT function block and method105 111

6.5.5 Programs...105 112
6.6 Sequential Function Chart (SFC) elements ..106 113

6.6.1 General ...106 114
6.6.2 Steps ...106 115
6.6.3 Transitions...108 116
6.6.4 Actions ..110 117

6.6.4.1 General ...110 118
6.6.4.2 Declaration ...111 119
6.6.4.3 Association with steps ...112 120
6.6.4.4 112 121
6.6.4.5 Action blocks...112 122
6.6.4.6 Action qualifiers ..113 123
6.6.4.7 Action control ..114 124

6.6.5 Rules of evolution ..119 125
6.6.6 Compatibility of SFC elements ...126 126
6.6.7 SFC compliance requirements ...126 127

6.7 Configuration elements..126 128
6.7.1 General ...126 129
6.7.2 Configurations, resources, and access paths ...128 130
6.7.3 Tasks ..131 131

6.8 Namespaces ...137 132
6.8.1 General ...137 133
6.8.2 Declaration ..137 134
6.8.3 Usage..138 135

7 Textual languages ..139 136
7.1 Common elements...139 137
7.2 Instruction list (IL) ...139 138

7.2.1 Instructions..139 139
7.2.2 Operators, modifiers and operands ..140 140
7.2.3 Functions and function blocks..141 141

7.3 Structured Text (ST) ..144 142
7.3.1 Expressions ...144 143
7.3.2 Statements ..145 144

7.3.2.1 General ...145 145
7.3.2.2 Assignment statements ...146 146
7.3.2.3 Function and function block control statements147 147
7.3.2.4 Selection statements ...147 148
7.3.2.5 Iteration statements ..147 149

8 Graphic languages ...149 150
8.1 Common elements...149 151

8.1.1 General ...149 152
8.1.2 Representation of lines and blocks ..149 153

— 6 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

8.1.3 Direction of flow in networks ..150 154
8.1.4 Evaluation of networks...151 155
8.1.5 Execution control elements ..152 156

8.2 Ladder diagram (LD) ...153 157
8.2.1 General ...153 158
8.2.2 Power rails ..153 159
8.2.3 Link elements and states ...154 160
8.2.4 Contacts ..154 161
8.2.5 Coils ..155 162
8.2.6 Functions and function blocks..156 163
8.2.7 Order of network evaluation ...156 164

8.3 Function Block Diagram (FBD) ..156 165
8.3.1 General ...156 166
8.3.2 Combination of elements ...156 167
8.3.3 Order of network evaluation ...157 168

Annex A (normative) Specification method for textual languages ..158 169
A.1 Syntax ...158 170

A.1.1 Terminal symbols ..158 171
A.1.2 Non-terminal symbols ..158 172
A.1.3 Production rules ..158 173

A.2 Semantics ...159 174
Annex B (normative) Formal specifications of language elements160 175

B.1 Programming model ..160 176
B.2 Common elements...160 177

B.2.1 Letters, digits and identifiers ..160 178
B.2.2 Constants ..161 179

B.2.2.1 General ...161 180
B.2.2.2 Numeric literals ...161 181
B.2.2.3 Character strings...161 182
B.2.2.4 Time literals ..162 183

B.2.2.4.1 General..162 184
B.2.2.4.2 Duration...162 185
B.2.2.4.3 Time of day and date ...162 186

B.2.3 Data types ...162 187
B.2.3.1 General ...162 188
B.2.3.2 Elementary data types...163 189
B.2.3.3 Generic data types ..163 190
B.2.3.4 Derived data types ..163 191

B.2.4 Variables ...165 192
B.2.4.1 General ...165 193
B.2.4.2 Directly represented variables ...165 194
B.2.4.3 Multi-element variables ...165 195
B.2.4.4 Declaration and initialization ...165 196

B.2.5 Program organization units ..168 197
B.2.5.1 Functions ..168 198
B.2.5.2 Function blocks ...168 199
B.2.5.3 Programs ..169 200

B.2.6 Sequential function chart elements ..169 201
B.2.7 Configuration elements ..170 202

— 7 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

B.3 Language IL (Instruction List) ..171 203
B.3.1 Instructions and operands..171 204
B.3.2 Operators ..172 205

B.4 Language ST (Structured Text)..172 206
B.4.1 Expressions ...172 207
B.4.2 Statements ..173 208

B.4.2.1 General ...173 209
B.4.2.2 Assignment statements ...173 210
B.4.2.3 Subprogram control statements...173 211
B.4.2.4 Selection statements ...173 212
B.4.2.5 Iteration statements ..174 213

Annex C (normative) Delimiters and keywords ..175 214
Annex D (normative) Implementation dependencies ..179 215
Annex E (normative) Error conditions ..181 216
Annex F (informative) Reference character set ...183 217
 218
Figures 219

Figure 1 - Software model ...22 220
Figure 2 - Communication model...23 221
Figure 3 - Combination of programmable controller language elements.................................25 222
Figure 4 - Hierarchy of generic data types...35 223
Figure 5 - Examples of function usage ..52 224
Figure 6 - Examples of function declarations and usage..59 225
Figure 7 - Examples of typed and overloaded functions ..62 226
Figure 8 - Examples of explicit typed type conversion functions with typed functions62 227
Figure 9 - Explicit vs. Implicit type conversion ...63 228
Figure 10 - Function block instantiation examples ...76 229
Figure 11 - Examples of usage of EN and ENO in function blocks ...77 230
Figure 12 - Examples of function block declarations..79 231
Figure 13 - Graphical use of function block names ..83 232
Figure 14 - Declaration and usage of in-out variables in function blocks................................84 233
Figure 15 - Standard timer function blocks - timing diagrams ..89 234
Figure 16 – Function block with methods declaration and method call (Example)92 235
Figure 17 – Function block with methods and method call (Example)93 236
Figure 18 –Internal and external method call (Example) ..94 237
Figure 19 – Method accessability (Example) ...95 238
Figure 20 – Interface with derived Function blocks (Example) ...96 239
Figure 23 – Example of interface implementation ..97 240
Figure 22 – Example of Interface declaration ..99 241
Figure 24 – Example of interface usage ..99 242
Figure 25 – Interface inheritance and function block inheritance (Examples)101 243
Figure 26 – Example of inheritance and override ..102 244
Figure 27 – Dynamic vs. static Name binding ..103 245

Figure 28 – Usage of THIS ...104 246

— 8 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Figure 29 – Usage of SUPER ...104 247

Figure 30 – Polymorphism (Example)..104 248
Figure 31 - ACTION_CONTROL function block - External interface.....................................115 249
Figure 32 - ACTION_CONTROL function block body...117 250
Figure 33 - Action control example..119 251
Figure 34 - Examples of SFC evolution rules ..124 252
Figure 35 - Examples of SFC errors ..125 253
Figure 36 - Configuration example ..128 254
Figure 37 - Examples of CONFIGURATION and RESOURCE declaration features..............131 255
Figure 38 - Examples of task associations to function block instances137 256
Figure 39 - Examples of instruction fields..140 257
Figure 40 - EXIT statement example ...148 258
Figure 41 - CONTINUE statement example ...148 259
Figure 42 - Feedback path example ..152 260
Figure 43 - Examples of Boolean OR ..157 261
 262
Tables 263

Table 1 - Character set features..27 264
Table 2 - Identifier features ...28 265
Table 3 - Comment feature ...29 266
Table 4 - Pragma feature ..29 267
Table 5 - Numeric literals ..30 268
Table 6 - Character string literal features ..31 269
Table 7 - Two-character combinations in character strings ..31 270
Table 8 - Duration literal features ..32 271
Table 9 - Date and time of day literals...32 272
Table 10 - Examples of date and time of day literals ...33 273
Table 11 - Elementary data types..33 274

Table 12 - Data type declaration features – Using keyword TYPE ..36 275

Table 13 - Default initial values of elementary data types..38 276
Table 14 - Data type initial value declaration features ...39 277
Table 15 - Location and size prefix features for directly represented variables41 278
Table 16 - Partial access of ANY_BIT variables ..42 279
Table 17 - Variable-length array features ..44 280
Table 18 - Variable declaration keywords..45 281
Table 19 - Usages of VAR_GLOBAL, VAR_EXTERNAL and CONSTANT declarations47 282
Table 20 - Variable type assignment features – AT keyword ...47 283
Table 21 - Variable initial value assignment features...49 284
Table 22 - Graphical negation of Boolean signals ...54 285
Table 23 - Usage of formal argument names...54 286
Table 24 - Textual call of functions for formal and non-formal argument list55 287
Table 25 - Use of EN input and ENO output ..56 288
Table 26 - Function features ...57 289

— 9 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 27 - Typed and overloaded functions...60 290
Table 28 - Type Conversion ...60 291
Table 29 - Type conversion function features ..64 292
Table 30 - Standard functions of one numeric variable ..66 293
Table 31 - Standard arithmetic functions ...67 294
Table 32 - Standard bit shift functions ...68 295
Table 33 - Standard bitwise Boolean functions ..69 296

Table 34 - Standard selection functionsd ..69 297
Table 35 - Standard comparison functions ..71 298
Table 36 - Standard character string functions ..72 299
Table 37 - Functions of time data types ..73 300
Table 38 - Functions of enumerated data types...74 301
Table 39 - Examples of function block I/O variable usage ...76 302
Table 40 - Function block declaration and usage features ...79 303

Table 41 - Standard bistable function blocks a ..85 304
Table 42 - Standard edge detection function blocks ..86 305
Table 43 - Standard counter function blocks ...86 306
Table 44 - Standard timer function blocks ...88 307
Table 45 - Features of object oriented function blocks ..90 308
Table 46 - Program declaration features ...106 309
Table 47 - Step features ...107 310
Table 48 - Transitions and transition conditions ..109 311

Table 49 - Declaration of actions a,b...111 312
Table 50 - Step/action association ..112 313
Table 51 - Action block features ..113 314
Table 52 - Action qualifiers ...113 315
Table 53 - Action control features a ...119 316
Table 54 - Sequence evolution..120 317
Table 55 - Compatible SFC features ...126 318
Table 56 - SFC minimal compliance requirements...126 319
Table 57 - Configuration and resource declaration features ..130 320
Table 58 - Task features ...133 321
Table 59 - Parenthesized expression features for IL language ..140 322
Table 60 - Instruction list operators ...141 323
Table 61 - Function block call and Function call features for IL language142 324
Table 62 - Standard function block input operators for IL language143 325
Table 63 - Operators of the ST language ..145 326
Table 64 - ST language statements...145 327
Table 65 - Representation of lines and blocks ...149 328
Table 66 - Graphic execution control elements..152 329
Table 67 - Power rails ...153 330
Table 68 - Link elements ...154 331

— 10 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 69 - Contacts a..154 332
Table 70 - Coils ..155 333
Table C.1 - Delimiters ...175 334
Table C.2 - Keywords..177 335
Table D.1 - Implementation dependencies ..179 336
Table E.1 - Error conditions ..181 337
Table G.1 - Character representations ..183 338
Table G.2 - Character encodings ..184 339
 340

 341

— 11 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

INTERNATIONAL ELECTROTECHNICAL COMMISSION 342

____________ 343

PROGRAMMABLE CONTROLLERS – 344
 345

Part 3: Programming languages 346
 347

IEC 61131-3, Ed. 3 348
 349
 350

FOREWORD 351

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising 352
all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote interna-353
tional co-operation on all questions concerning standardization in the electrical and electronic fields. To this 354
end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted 355
to technical committees; any IEC National Committee interested in the subject dealt with may participate in this 356
preparatory work. International, governmental and non-governmental organizations liaising with the IEC also 357
participate in this preparation. The IEC collaborates closely with the International Organization for Standardiza-358
tion (ISO) in accordance with conditions determined by agreement between the two organizations. 359

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an interna-360
tional consensus of opinion on the relevant subjects since each technical committee has representation from all 361
interested National Committees. 362

3) The documents produced have the form of recommendations for international use and are published in the form 363
of standards, technical specifications, technical reports or guides and they are accepted by the National Com-364
mittees in that sense. 365

4) In order to promote international unification, IEC National Committees undertake to apply IEC International 366
Standards transparently to the maximum extent possible in their national and regional standards. Any diver-367
gence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated 368
in the latter. 369

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any 370
equipment declared to be in conformity with one of its standards. 371

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject 372
of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights. 373

International Standard IEC 61131-3 has been prepared by subcommittee 65B: Devices, of IEC 374
technical committee 65: Industrial-process measurement and control. 375

The text of this standard is based on the following documents: 376

FDIS Report on voting

-- --

 377
Full information on the voting for the approval of this standard can be found in the report on 378
voting indicated in the above table. 379

This third edition of IEC 61131-3 cancels and replaces the second edition, published in 2003, 380
and constitutes a technical revision. 381

This International Standard has been reproduced without significant modification to its original 382
contents or drafting. 383

The committee has decided that the contents of this publication will remain unchanged until 384
2013. At this date, the publication will be 385

• reconfirmed; 386
• withdrawn; 387
• replaced by a revised edition, or 388
• amended. 389

— 12 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

PROGRAMMABLE CONTROLLERS – 390
 391

Part 3: Programming languages 392

1 Scope 393

This Part of IEC 61131 specifies syntax and semantics of programming languages for pro-394
grammable controllers as defined in part 1 of IEC 61131. 395

The functions of program entry, testing, monitoring, operating system, etc., are specified in 396
Part 1 of IEC 61131. 397

This Part of IEC 61131 specifies the syntax and semantics of a unified suite of programming 398
languages for programmable controllers (PCs). These consist of two textual languages, IL (In-399
struction List) and ST (Structured Text), and two graphical languages, LD (Ladder Diagram) 400
and FBD (Function Block Diagram). 401

Sequential Function Chart (SFC) elements are defined for structuring the internal organization 402
of programmable controller programs and function blocks. Also, configuration elements are de-403
fined which support the installation of programmable controller programs into programmable 404
controller systems. 405

In addition, features are defined which facilitate communication among programmable control-406
lers and other components of automated systems. 407

The programming language elements defined in this Part may be used in an interactive pro-408
gramming environment. The specification of such environments is beyond the scope of this 409
standard; however, such an environment shall be capable of producing textual or graphic pro-410
gram documentation in the formats specified in this standard. 411

The material in this Part is arranged in “bottom-up” fashion, that is, simpler language elements 412
are presented first, in order to minimize forward references in the text. The remainder of this 413
subclause provides an overview of the material presented in this part and incorporates some 414
general requirements. 415

This Part of IEC 61131-3 does not include any provisions for the harmonization with IEC 61499 416
- Function Blocks. 417

2 Normative references 418

The following referenced documents are indispensable for the application of this document. For 419
dated references, only the edition cited applies. For undated references, the latest edition of 420
the referenced document (including any amendments) applies. 421

IEC 60050 (all parts): International Electrotechnical Vocabulary (IEV) 422
 423
IEC 60559:1989, Binary floating-point arithmetic for microprocessors systems 424
 425
IEC 60617-12:1997, Graphical symbols for diagrams – Part 12: Binary logic elements 426
 427
IEC 60617-13:1993, Graphical symbols for diagrams – Part 13: Analogue elements 428
 429
IEC 60848:2002, GRAFCET specification language for sequential function charts 430
 431
IEC 61131-1, Programmable controllers – Part 1: General information 432
 433
IEC 61131-5, Programmable controllers – Part 5: Communications 434
 435
ISO/AFNOR: 1989, Dictionary of computer science – The standardised vocabulary 436
 437
ISO/IEC 10646-1:1993, Information technology – Universal Multiple-Octet Coded Character Set 438
(UCS) – Part 1: Architecture and Basic Multilingual Plane 439

— 13 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

3 Terms and definitions 440

For the purposes of this part of IEC 61131, the following definitions apply. Definitions applying 441
to all parts of IEC 61131 are given in Part 1. 442

NOTE 1 Terms defined in this subclause are italicized where they appear in the bodies of definitions. 443
NOTE 2 The notation “(ISO)” following a definition indicates that the definition is taken from the ISO/AFNOR Dic-444
tionary of computer science. 445
NOTE 3 The ISO/AFNOR Dictionary of computer science and the IEC 60050 should be consulted for terms not de-446
fined in this standard. 447

3.1 448
absolute time 449
combination of time of day and date information 450

3.2 451
access path 452
association of a symbolic name with a variable for the purpose of open communication 453

3.3 454
action 455
Boolean variable, or a collection of operations to be performed, together with an associated 456
control structure, as specified in 6.6.4.1 457

3.4 458
action block 459
graphical language element which utilizes a Boolean input variable to determine the value of a 460
Boolean output variable or the enabling condition for an action, according to a predetermined 461
control structure as defined in 6.6.4.7 462

3.5 463
aggregate 464
structured collection of data objects forming a data type. (ISO) 465

3.6 466
argument 467
synonymous with input variable, output variable or in-out variable 468

3.7 469
array 470
aggregate that consists of data objects, with identical attributes, each of which may be uniquely 471
referenced by subscripting. (ISO) 472

3.8 473
assignment 474
mechanism to give a value to a variable or to an aggregate. (ISO) 475

3.9 476
based number 477
number represented in a specified base other than ten 478

3.10 479
binary coded decimal (BCD) 480
encoding for decimal numbers in which each digit is represented by its own binary sequence 481

3.11 482
bistable function block 483
function block with two stable states controlled by one or more inputs 484

— 14 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

3.12 485
bit string 486
data element consisting of one or more bits 487

3.13 488
body 489
that portion of a program organization unit which specifies the operations to be performed on 490
the declared operands of the program organization unit when its execution is called 491

3.14 492
character string 493
aggregate that consists of an ordered sequence of characters 494

3.15 495
comment 496
language construct for the inclusion of text in a program and having no impact on the execution 497
of the program. (ISO) 498

3.16 499
compile 500
to translate a program organization unit or data type specification into its machine language 501
equivalent or an intermediate form 502

3.17 503
configuration 504
language element corresponding to a programmable controller system as defined in IEC 505
61131-1 506

3.18 507
constant 508
language element which declares a data element with a fixed value 509

3.19 510
counter function block 511
function block which accumulates a value for the number of changes sensed at one or more 512
specified inputs 513

3.20 514
data type 515
set of values together with a set of permitted operations. (ISO) 516

3.21 517
date and time 518
date within the year and the time of day represented as a single language element 519

3.22 520
declaration 521
mechanism for establishing the definition of a language element 522
 523
NOTE A declaration normally involves attaching an identifier to the language element, and allocating attributes 524
such as data types and algorithms to it. 525

3.23 526
delimiter 527
character or combination of characters used to separate program language elements 528

3.24 529
derived function block type 530
function block type created by inheritance from another function block type 531

— 15 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

3.25 532
direct representation 533
means of representing a variable in a programmable controller program from which a manufac-534
turer-specified correspondence to a physical or logical location may be determined directly 535

3.26 536
double word 537
data element containing 32 bits 538

3.27 539
dynamic binding 540
a situation in which the target of a method call is retrieved during runtime according to the ac-541
tual type of an instance or interface 542

3.28 543
evaluation 544
process of establishing a value for an expression or a function, or for the outputs of a network 545
or function block instance, during program execution 546

3.29 547
execution control element 548
language element which controls the flow of program execution 549

3.30 550
falling edge 551
change from 1 to 0 of a Boolean variable 552

3.31 553
function (procedure) 554
program organization unit which, when executed, yields exactly one data element and possibly 555
additional output variables (which may be multi-valued, for example, an array or structure), and 556
whose call can be used in textual languages as an operand in an expression 557

3.32 558
function block instance (function block) 559
instance of a function block type 560

3.33 561
function block type 562
programmable controller programming language element consisting of: 563
1) the definition of a data structure partitioned into input, output, and internal variables; and 564
2 a) either a set of operations to be performed upon the elements of the data structure when an 565
instance of the function block type is called, or 566
2b) a set of methods. 567

3.34 568
function block diagram 569
network in which the nodes are function block instances, graphically represented functions 570
(procedures), variables, literals, and labels 571

3.35 572
generic data type 573
data type which represents more than one type of data, as specified in 6.3.2 574

3.36 575
global scope 576
scope of a declaration applying to all program organization units within a resource or configura-577
tion 578

— 16 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

3.37 579
global variable 580
variable whose scope is global 581

3.38 582
hierarchical addressing 583
direct representation of a data element as a member of a physical or logical hierarchy, for ex-584
ample, a point within a module which is contained in a rack, which in turn is contained in a cu-585
bicle, etc 586

3.39 587
identifier 588
combination of letters, numbers, and underline characters, as specified in 6.1.2, which begins 589
with a letter or underline and which names a language element 590

3.40 591
in-out variable 592
variable which is used to supply an argument to a program organization unit and which is addi-593
tionally used to return the result(s) of the evaluation of a program organization unit 594

3.41 595
initial value 596
value assigned to a variable at system start-up 597

3.42 598
inheritance 599
creation of a new function block type by using an existing function block type 600

NOTE The new function block type contains the same variables and methods than the existing function block type, 601
unless a method is overridden by the new function block type. The new function block type may contain additional 602
variables and methods. 603

3.43 604
input variable (input) 605
variable which is used to supply an argument to a program organization unit 606

3.44 607
instance 608
individual, named copy of the data structure associated with a function block type or program 609
type, which persists from one call of the associated operations to the next 610

3.45 611
instance name 612
identifier associated with a specific instance 613

3.46 614
instantiation 615
the creation of an instance 616

3.47 617
integer literal 618
literal which directly represents a value of type SINT, INT, DINT, LINT, BOOL, BYTE, WORD, 619
DWORD, or LWORD, as defined in 6.3.2 620

3.48 621
interface 622
language element containing a set of VAR CONSTANT-declarations and a set of method proto-623
types. 624

3.49 625
keyword 626
lexical unit that characterizes a language element, for example, “IF” 627

— 17 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

3.50 628
label 629
language construction naming an instruction, network, or group of networks, and including an 630
identifier 631

3.51 632
language element 633
any item identified by a symbol on the left-hand side of a production rule in the formal specifi-634
cation given in annex B of this standard 635

3.52 636
literal 637
lexical unit that directly represents a value. (ISO) 638

3.53 639
local scope 640
the scope of a declaration or label applying only to the program organization unit in which the 641
declaration or label appears 642

3.54 643
logical location 644
location of a hierarchically addressed variable in a schema which may or may not bear any re-645
lation to the physical structure of the programmable controller's inputs, outputs, and memory 646

3.55 647
long real 648
real number represented in a long word 649

3.56 650
long word 651
64-bit data element. 652

3.57 653
memory (user data storage) 654
functional unit to which the user program can store data and from which it can retrieve the 655
stored data 656

3.58 657
method 658
language element similar to a function that can only be defined in the scope of a function block 659
type and with implicit access to the variables of the function block type 660
 661

3.59 662
method prototype 663
language element containing only the external interface of a method 664

NOTE i.e.: a method prototype contains VAR_INPUT, VAR_OUTPUT and VAR_IN_OUT variables and the return 665
value but no local variables and no operations. 666

3.60 667
named element 668
element of a structure which is named by its associated identifier 669

3.61 670
network 671
arrangement of nodes and interconnecting branches 672

3.62 673
off-delay (on-delay) timer function block 674
function block which delays the falling (rising) edge of a Boolean input by a specified duration 675

— 18 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

3.63 676
operation 677
lanquage element that performs an elementary piece of a program organisation unit or method 678
 679
NOTE An operation is represented in Instruction List (IL) as instruction, in Structured Text (ST) as statement, in 680
Ladder Diagram (LD) and Function Block Diagram (FBD) as graphical symbol like contact. 681

3.64 682
operand 683
language element on which an operation is performed 684

3.65 685
operator 686
symbol that represents the action to be performed in an operation 687

3.66 688
override 689
method of a derived function block type with the same name, the same variables 690
(VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT) and the same return value as a method of the 691
base (parent) function block type 692

3.67 693
output variable (output) 694
variable which is used to return the result(s) of the evaluation of a program organization unit 695

3.68 696
overloaded 697
with respect to an operation or function, capable of operating on data of different types, as 698
specified in 6.5.2.5 699

3.69 700
power flow 701
symbolic flow of electrical power in a ladder diagram, used to denote the progression of a logic 702
solving algorithm 703

3.70 704
pragma 705
language construct for the inclusion of text in a program organization unit which may affect the 706
preparation of the program for execution 707

3.71 708
program (verb) 709
to design, write, and test user programs 710

3.72 711
program organization unit (POU) 712
function, function block, or program 713

NOTE This term may refer to either a type or an instance. 714

3.73 715
real literal 716
literal representing data of type REAL or LREAL. 717

3.74 718
resource 719
language element corresponding to a “signal processing function” and its “man-machine inter-720
face” and “sensor and actuator interface functions”, if any, as defined in IEC 61131-1 721

— 19 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

3.75 722
retentive data 723
data stored in such a way that its value remains unchanged after a power down / power up se-724
quence 725

3.76 726
return 727
language construction within a program organization unit designating an end to the execution 728
sequences in the unit 729

3.77 730
rising edge 731
change from 0 to 1 of a Boolean variable 732

3.78 733
scope 734
that portion of a language element within which a declaration or label applies 735

3.79 736
semantics 737
relationships between the symbolic elements of a programming language and their meanings, 738
interpretation and use. 739

3.80 740
semigraphic representation 741
representation of graphic information by the use of a limited set of characters 742

3.81 743
single data element 744
data element consisting of a single value 745

3.82 746
single-element variable 747
variable which represents a single data element 748

3.83 749
step 750
situation in which the behaviour of a program organization unit with respect to its inputs and 751
outputs follows a set of rules defined by the associated actions of the step 752

3.84 753
structured data type 754
aggregate data type which has been declared using a STRUCT or FUNCTION_BLOCK declara-755
tion 756

3.85 757
subscripting 758
mechanism for referencing an array element by means of an array reference and one or more 759
expressions that, when evaluated, denote the position of the element 760

3.86 761
symbolic representation 762
use of identifiers to name variables 763

3.87 764
task 765
execution control element providing for periodic or triggered execution of a group of associated 766
program organization units 767

— 20 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

3.88 768
time literal 769
literal representing data of type TIME, DATE, TIME_OF_DAY, or DATE_AND_TIME 770

3.89 771
transition 772
condition whereby control passes from one or more predecessor steps to one or more succes-773
sor steps along a directed link 774

3.90 775
unsigned integer 776
integer literal not containing a leading plus (+) or minus (-) sign 777

3.91 778
variable 779
software entity that may take different values, one at a time 780
[ISO 2382] 781

NOTE The values of a variable are usually restricted to a certain data type. 782

3.92 783
wired OR 784
construction for achieving the Boolean OR function in the LD language by connecting together 785
the right ends of horizontal connectives with vertical connectives 786

4 Architectural models 787

4.1 Software model 788
The basic high-level language elements and their interrelationships are illustrated in Figure 1. 789
These consist of elements which are programmed using the languages defined in this standard, 790
that is, programs and function block types; and configuration elements, namely, configurations, 791
resources, tasks, global variables, access paths, and instance-specific initializations, which 792
support the installation of programmable controller programs into programmable controller sys-793
tems. 794

— 21 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 CONFIGURATION

RESOURCE

TASK TASK

PROGRAM PROGRAM

FB FB

RESOURCE

TASK TASK

PROGRA
M

PROGRAM

FB FB

GLOBAL and DIRECTLY REPRESENTED VARIABLES
and INSTANCE-SPECIFIC INITIALIZATIONS

ACCESS PATHS

Execution control path

Variable access paths

FB Function block

Variable

or

Communication function (See IEC 61131-5)Key

 795
 796

NOTE 1 This figure is illustrative only. The graphical representation is not normative. 797
NOTE 2 In a configuration with a single resource, the resource need not be explicitly represented. 798

Figure 1 - Software model 799

A configuration is the language element which corresponds to a programmable controller sys-800
tem as defined in IEC 61131-1. A resource corresponds to a “signal processing function” and 801
its “man-machine interface” and “sensor and actuator interface” functions (if any) as defined in 802
IEC 61131-1. A configuration contains one or more resources, each of which contains one or 803
more programs executed under the control of zero or more tasks. A program may contain zero 804
or more function block instances or other language elements as defined in this part. 805

Configurations and resources can be started and stopped via the “operator interface”, “pro-806
gramming, testing, and monitoring”, or “operating system” functions defined in IEC 61131-1. 807
The starting of a configuration shall cause the initialization of its global variables according to 808
the rules given in 6.4.3, followed by the starting of all the resources in the configuration. The 809
starting of a resource shall cause the initialization of all the variables in the resource, followed 810
by the enabling of all the tasks in the resource. The stopping of a resource shall cause the dis-811
abling of all its tasks, while the stopping of a configuration shall cause the stopping of all its 812
resources. Mechanisms for the control of tasks are defined in 6.7.3, while mechanisms for the 813
starting and stopping of configurations and resources via communication functions are defined 814
in IEC 61131-5. 815

Programs, resources, global variables, access paths (and their corresponding access privi-816
leges), and configurations can be loaded or deleted by the “communication function” defined in 817
IEC 61131-1. The loading or deletion of a configuration or resource shall be equivalent to the 818
loading or deletion of all the elements it contains. 819

Access paths and their corresponding access privileges are defined in 6.7.2. 820

IEC 2468/02

— 22 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

The mapping of the language elements defined in this subclause onto communication objects is 821
defined in IEC 61131-5. 822

4.2 Communication model 823
Figure 2 illustrates the ways that values of variables can be communicated among software 824
elements. 825

As shown in Figure 2 a), variable values within a program can be communicated directly by 826
connection of the output of one program element to the input of another. This connection is 827
shown explicitly in graphical languages and implicitly in textual languages. 828

Variable values can be communicated between programs in the same configuration via global 829
variables such as the variable x illustrated in Figure 2 b). These variables shall be declared as 830
GLOBAL in the configuration, and as EXTERNAL in the programs, as specified in 6.4.4. 831

As illustrated in Figure 2 c), the values of variables can be communicated between different 832
parts of a program, between programs in the same or different configurations, or between a 833
programmable controller program and a non-programmable controller system, using the com-834
munication function blocks defined in IEC 61131-5 and described in 6.5.3.5.6. In addition, pro-835
grammable controllers or non-programmable controller systems can transfer data which is 836
made available by access paths, as illustrated in Figure 2 d), using the mechanisms defined in 837
IEC 61131-5. 838

PROGRAM A

FB_X

a

FB1

FB_Y

b

FB2

a) Data flow connection within a program

a

FB_Y

bx x

CONFIGURATION C

VAR_GLOBAL
 x: BOOL;
END_VAR

FB2FB1

FB_X

PROGRAM A
 VAR_EXTERNAL
 x: BOOL;
END_VAR

PROGRAM B
 VAR_EXTERNAL
 x: BOOL;
END_VAR

b) Communication via GLOBAL variables

PROGRAM A

FB_X
FB1

CONFIGURATION C

SEND

send1

a

SD1
FB_Y
b

FB2

CONFIGURATION D

RCV

rcv1

RD1

PROGRAM B

c) Communication function blocks

d) Communication via access paths

NOTE 1 This figure is illustrative only. The graphical representation is not normative. 839
NOTE 2 In these examples, configurations C and D are each considered to have a single resource. 840
NOTE 3 The details of the communication function blocks are not shown in this figure. See 6.5.3.5.6 and IEC 841
61131-5. 842
NOTE 4 As specified in 6.7, access paths can be declared on directly represented variables, global variables, or 843
input, output, or internal variables of programs or function block instances. 844
NOTE 5 IEC 61131-5 specifies the means by which both PC and non-PC systems can use access paths for reading 845
and writing of variables. 846

Figure 2 - Communication model 847

4.3 Programming model 848
The elements of programmable controller programming languages, and the subclauses in 849
which they appear in this Part, are classified as follows: 850

Data types Variables (6.4) 851

PROGRAM A

FB_X
FB1

a Z

VAR_ACCESS
CSX: P1.Z : REAL READ_ONLY;

PROGRAM B

FB_Y
b

FB2

CONFIGURATION C CONFIGURATION D

READ
TO_FB2

RD1
'CSX' VAR_1

P1

— 23 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Program organization units (6.5) 852
 Functions (6.5.2) 853
 Function blocks (6.5.3) 854
 Methods (6.5.4.2) 855
 Interfaces (6.5.4.3 856
 Programs (6.5.5) 857
Sequential Function Chart (SFC) elements (4.3) 858
Configuration elements (6.7) 859
 Global variables (6.7.2) 860
 Resources (6.7.2) 861
 Access paths (6.7.2) 862
 Tasks (6.7.3) 863
 864
[Editor’s note: Methods and Interfaces are new elements. TBD.] 865
 866
As shown in Figure 3, the combination of these elements shall obey the following rules: 867

1. Derived data types shall be declared as specified in 6.3.4, using the standard data types 868
specified in 6.3.2 and 6.3.3 and any previously derived data types. 869

2. Derived functions can be declared as specified in 6.5.2, using standard or derived data 870
types, the standard functions defined in 6.5.2.6, and any previously derived functions. This 871
declaration shall use the mechanisms defined for the IL, ST, LD or FBD language. 872

3. Derived function block types can be declared as specified in 6.5.3.5, using standard or de-873
rived data types and functions, the standard function block types defined in 6.5.3.5, and 874
any previously derived function block types. This declaration shall use the mechanisms de-875
fined for the IL, ST, LD, or FBD language, and can include Sequential Function Chart (SFC) 876
elements as defined in 6.6. 877

4. A program shall be declared using standard or derived data types, functions, and function 878
blocks. This declaration shall use the mechanisms defined for the IL, ST, LD, or FBD lan-879
guage, and can include Sequential Function Chart (SFC) elements as defined in 6.6. 880

5. Programs can be combined into configurations using the elements defined in 6.7.2, that is, 881
global variables, resources, tasks, and access paths. 882

Reference to “previously derived” data types, functions, and function blocks in the above rules 883
is intended to imply that once such a derived element has been declared, its definition is avail-884
able, for example, in a “library” of derived elements, for use in further derivations. Therefore, 885
the declaration of a derived element type shall not be contained within the declaration of an-886
other derived element type. 887

A programming language other than one of those defined in this standard may be used in the 888
declaration of a function or function block type. The means by which a user program written in 889
one of the languages defined in this standard calls the execution of, and accesses the data as-890
sociated with, such a derived function or an instance of such a derived function block type shall 891
be as defined in this standard. 892

— 24 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

LD - Ladder Diagram (8.2), FBD - Function Block Diagram (8.3),IL - Instruction List (7.2),
ST - Structured Text (7.3), OTHERS - Other programming languages.

LIBRARY ELEMENTS PRODUCTIONS DERIVED ELEMENTS

DATA TYPES
Standard
Derived

FUNCTIONS
Standard
Derived

FUNCTION BLOCKS
Standard
Derived

PROGRAMS

RESOURCES

Declaration
IL, ST, LD, FBD

OTHERS

Declaration
IL, ST, LD, FBD

SFC elements
OTHERS

Declaration
IL, ST, LD, FBD

SFC elements

Tasks

Declaration
Global variables

Access paths

Derived

Data types

Derived
functions

Derived
function
blocks

PROGRAM

CONFIGURATION

Declaration

(1)

(2)

(3)

(4)

(5)

NOTE 1 The parenthesized numbers (1) to (5) refer to the corresponding paragraphs 1) through 5) above. 893
NOTE 2 Data types are used in all productions. For clarity, the corresponding linkages are omitted in this figure. 894

Figure 3 - Combination of programmable controller language elements 895

5 Compliance 896

5.1 System compliance 897

A programmable controller system, as defined in IEC 61131-1, which claims to comply, wholly 898
or partially, with the requirements of this Part of IEC 61131 shall do so only as described be-899
low. 900

A compliance statement shall be included in the documentation accompanying the system, or 901
shall be produced by the system itself. The form of the compliance statement shall be: 902

“This system complies with the requirements of IEC 61131-3, for the following language 903
features:”, 904

followed by a set of compliance tables in the following format: 905

Table title

Table No. Feature No. Features description

...

Table and feature numbers and descriptions are to be taken from the tables given in the rele-906
vant subclauses of this part of IEC 61131. Table titles are to be taken from the following table. 907

Table title For features in:

Common elements Clause 6

— 25 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Common textual elements Subclause 7.1

IL language elements Subclause 7.2

ST language elements Subclause 7.3

Common graphical elements Subclause 8.1

LD language elements Subclause 8.2

FBD language elements Subclause 8.3

For the purposes of determining compliance, some tables shall not be considered tables of fea-908
tures. 909

A programmable controller system complying with the requirements of this standard with re-910
spect to a language defined in this standard: 911

a) shall not require the inclusion of substitute or additional language elements in order to ac-912
complish any of the features specified in this standard, unless such elements are identified 913
and treated as noted in rules e) and f) below; 914

b) shall be accompanied by a document that specifies the values of all implementation de-915
pendencies as listed in Annex D; 916

c) shall be able to determine whether or not a user's language element violates any require-917
ment of this standard, where such a violation is not designated as an error in annex E, and 918
report the result of this determination to the user. In the case where the system does not 919
examine the whole program organization unit, the user shall be notified that the determina-920
tion is incomplete whenever no violations have been detected in the portion of the program 921
organization unit examined; 922

d) shall treat each user violation that is designated as an error in Annex E in at least one of 923
the following ways: 924
1) there shall be a statement in an accompanying document that the error is not reported; 925
2) the system shall report during preparation of the program for execution that an occur-926

rence of that error is possible; 927
3) the system shall report the error during preparation of the program for execution; 928
4) the system shall report the error during execution of the program and initiate appropri-929

ate system- or user-defined error handling procedures; 930
and if any violations that are designated as errors are treated in the manner described in 931
d)1) above, then a note referencing each such treatment shall appear in a separate section 932
of the accompanying document; 933

e) shall be accompanied by a document that separately describes any features accepted by 934
the system that are prohibited or not specified in this standard. Such features shall be de-935
scribed as being "extensions to the <language> language as defined in IEC 61131-3"; 936

f) shall be able to process in a manner similar to that specified for errors any use of any such 937
extension; 938

g) shall be able to process in a manner similar to that specified for errors any use of one of 939
implementation dependencies specified in Annex D; 940

h) shall not use any of the standard data type, function or function block type names defined 941
in this standard for manufacturer-defined features whose functionality differs from that de-942
scribed in this standard, unless such features are identified and treated as noted in rules e) 943
and f) above; 944

i) shall be accompanied by a document defining, in the form specified in Annex A, the format 945
of all textual language elements supported by the system; 946

j) shall be capable of reading and writing files containing any of the language elements de-947
fined as alternatives in the production library_element_declaration in Annex B, in the syn-948
tax defined in requirement i) above, encoded according to the “ISO-646 IRV” given as table 949
1 - Row 00 of ISO/IEC 10646-1; 950

— 26 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

k) shall be accompanied by a document describing the processing by the system of errors, 951
extensions and implementation dependencies as defined in items c) through f) above. 952

The phrase “be able to” is used in this subclause to permit the implementation of a software 953
switch with which the user may control the reporting of errors. 954

In cases where compilation or program entry is aborted due to some limitation of tables, etc., 955
an incomplete determination of the kind “no violations were detected, but the examination is 956
incomplete” will satisfy the requirements of this subclause. 957

5.2 Program compliance 958

A programmable controller program complying with the requirements of IEC 61131-3: 959

a) shall use only those features specified in this standard for the particular language used; 960
b) shall not use any features identified as extensions to the language; 961
c) shall not rely on any particular interpretation of implementation dependencies. 962

The results produced by a complying program shall be the same when processed by any com-963
plying system which supports the features used by the program, such results are influenced by 964
program execution timing, the use of implementation dependencies (as listed in Annex D) in 965
the program, and the execution of error handling procedures. 966

6 Common elements 967

6.1 Use of printed characters 968

6.1.1 Character set 969

Textual languages and textual elements of graphic languages shall be represented in terms of 970
the “ISO-646 IRV” given as table 1 - Row 00 of ISO/IEC 10646-1. 971

The use of characters from additional character sets, for example, the “Latin-1 Supplement” 972
given as table 2 - Row 00 of ISO/IEC 10646-1, is a typical extension of this standard. The en-973
coding of such characters shall be consistent with ISO/IEC 10646-1. 974

The required character set consists of all the characters in columns 002 through 007 of the 975
“ISO-646 IRV” as defined above, except for lower-case letters 976

Table 1 - Character set features 977

No. Description

1 Lower case charactersa

2a Number sign (#) OR

2b Pound sign (£)

3a Dollar sign ($) OR

3b Currency sign (¤)

4a Vertical bar (|) OR

4b Exclamation mark (!)

a When lower-case letters (#1) are supported, the case of letters shall not be significant in language elements
except within comments as defined in 6.1.5, string literals as defined in 6.2.2, and variables of type STRING
and WSTRING as defined in 6.3.

6.1.2 Identifiers 978
An identifier is a string of letters, digits, and underline characters which shall begin with a letter 979
or underline character. 980

The case of letters shall not be significant in identifiers, for example, the identifiers abcd, 981
ABCD, and aBCd shall be interpreted identically. 982

— 27 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Underlines shall be significant in identifiers, for example, A_BCD and AB_CD shall be inter-983
preted as different identifiers. Multiple leading or multiple embedded underlines are not al-984
lowed; for example, the character sequences __LIM_SW5 and LIM__SW5 are not valid identi-985
fiers. Trailing underlines are not allowed; for example, the character sequence LIM_SW5_ is 986
not a valid identifier. 987

At least six characters of uniqueness shall be supported in all systems which support the use 988
of identifiers, for example, ABCDE1 shall be interpreted as different from ABCDE2 in all such 989
systems. The maximum number of characters allowed in an identifier is an implementation 990
dependency. 991

Identifier features and examples are shown in Table 2. 992

Table 2 - Identifier features 993

No. Feature description Examples

1 Upper case and numbers IW215 IW215Z QX75 IDENT

2 Upper and lower case, numbers, embedded underlines All the above plus:
LIM_SW_5 LimSw5 abcd ab_Cd

3 Upper and lower case, numbers, leading or embedded underlines All the above plus: _MAIN _12V7

6.1.3 Keywords 994
Keywords are unique combinations of characters utilized as individual syntactic elements as 995
defined in Annex B. All keywords used in this standard are listed in Annex C. Keywords shall 996
not contain imbedded spaces. The case of characters shall not be significant in keywords; for 997
instance, the keywords FOR and for are syntactically equivalent. The keywords listed in 998
 Annex C shall not be used for any other purpose, for example, variable names or extensions as 999
defined in 6.4. 1000

NOTE National standards organizations can publish tables of translations of the keywords given in 1001
annex C. 1002

6.1.4 Use of white space 1003
The user shall be allowed to insert one or more characters of “white space” anywhere in the 1004
text of programmable controller programs except within keywords, literals, enumerated values, 1005
identifiers, directly represented variables as described in 6.4, or delimiter combinations (for 1006
example, for comments as defined in 6.1.5. “White space” is defined as the SPACE character 1007
with encoded value 32 decimal, as well as non-printing characters such as tab, newline, etc. for 1008
which no encoding is given in IEC/ISO 10646-1. 1009

6.1.5 Comments 1010

There are two different kinds of user comments. 1011

Multi-line comments shall be delimited at the beginning and end by the special character com-1012
binations (* and *), respectively, as shown in feature 1 of Table 3. 1013

Single line comments start with the character combination // and end at the next following new 1014
line as shown in Table 3 feature 2. 1015

Comments shall be permitted anywhere in the program where spaces are allowed, except 1016
within character string literals as defined in 6.2.2. Comments shall have no syntactic or seman-1017
tic significance in any of the languages defined in this standard. 1018

Nested comments use corresponding pairs of (*, *), e.g. (* (* NESTED *) *). 1019

In single-line comments the special character combinations (* and *) have no special mean-1020
ing, and in multi-line comments the special character combination // has no special meaning. 1021

— 28 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 3 - Comment feature 1022

No. Feature description Example

1 Multi-line Comments (****************************
 A framed comment
****************************)

2 Single-line comment X := 13; // comment for one line

// a single line comments can start at

// the first character position.

3 Nested comment (* (* NESTED *) *)

6.1.6 Pragma 1023
As illustrated in Table 4, pragmas shall be delimited at the beginning and end by curly brackets 1024
{ and }, respectively. The syntax and semantics of particular pragma constructions are im-1025
plementation dependencies. Pragmas shall be permitted anywhere in the program where 1026
spaces are allowed, except within character string literals as defined in 6.2.2. 1027

NOTE Curly brackets inside a comment have no semantic meaning; comments inside curly brackets may or may 1028
not have semantic meaning depending on the implementation. 1029

Table 4 - Pragma feature 1030

No. Feature description Examples

1 Pragmas {VERSION 3.1}
{AUTHOR JHC}
{x := 256, y := 384}

6.2 External representation of data 1031

6.2.1 Numeric literals and bit string literals 1032

External representations of data in the various programmable controller programming lan-1033
guages shall consist of numeric literals, character strings, and time literals. 1034

There are two classes of numeric literals: integer literals and real literals. A numeric literal is 1035
defined as a decimal number or a based number. The maximum number of digits for each kind 1036
of numeric literal shall be sufficient to express the entire range and precision of values of all 1037
the data types which are represented by the literal in a given implementation. 1038

Single underline characters (_) inserted between the digits of a numeric literal shall not be 1039
significant. No other use of underline characters in numeric literals is allowed. 1040

Decimal literals shall be represented in conventional decimal notation. Real literals shall be 1041
distinguished by the presence of a decimal point. An exponent indicates the integer power of 1042
ten by which the preceding number is to be multiplied to obtain the value represented. Decimal 1043
literals and their exponents can contain a preceding sign (+ or -). 1044

Integer literals can also be represented in base 2, 8, or 16. The base shall be in decimal nota-1045
tion. For base 16, an extended set of digits consisting of the letters A through F shall be used, 1046
with the conventional significance of decimal 10 through 15, respectively. Based numbers shall 1047
not contain a leading sign (+ or -). They are interpreted as positive integers. 1048

Numeric literals which represent a positive integer may be used as bit string literals. 1049

Boolean data shall be represented by integer literals with the value zero (0) or one (1), or the 1050
keywords FALSE or TRUE, respectively. 1051

Numeric literal features and examples are shown in Table 5. 1052

— 29 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

The data type of a boolean or numeric literal can be specified by adding a type prefix to the 1053
literal, consisting of the name of an elementary data type and the # sign. For examples see 1054
feature #9 in Table 5. 1055

Table 5 - Numeric literals 1056

No. Feature description Examples

1 Integer literals -12 0 123_456 +986

2 Real literals -12.0 0.0 0.4560 3.14159_26

3

Real literals with exponents

-1.34E-12 or -1.34e-12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

4 Base 2 literals 2#1111_1111 (255 decimal)
2#1110_0000 (224 decimal)

5 Base 8 literals 8#377 (255 decimal)
8#340 (224 decimal)

6 Base 16 literals 16#FF or 16#ff (255 decimal)
16#E0 or 16#e0 (224 decimal)

7 Boolean zero and one 0 1

8 Boolean FALSE and TRUE FALSE TRUE

9 Typed literals INT#16#7FFF (INT representation of the decimal value 32767)
INT#16#FFFF (not allowed representation of the decimal value -1)
WORD#16#AFFE (WORD representation of the hexadecimal value AFFE)
WORD#1234 (WORD representation of the decimal value 1234 = 16#4D2)
UINT#16#89AF (UINT representation of the hexadecimal value 89AF)
BOOL#0 BOOL#1 BOOL#FALSE BOOL#TRUE

NOTE The keywords FALSE and TRUE correspond to Boolean values of 0 and 1, respectively.

6.2.2 Character string literals 1057

Character string literals include single-byte or double-byte encoded characters. 1058

A single-byte character string literal is a sequence of zero or more characters from Row 00 of 1059
the ISO/IEC 10646-1 character set prefixed and terminated by the single quote character ('). 1060
In single-byte character strings, the three-character combination of the dollar sign ($) followed 1061
by two hexadecimal digits shall be interpreted as the hexadecimal representation of the eight-1062
bit character code, as shown in feature #1 of Table 6. 1063

A double-byte character string literal is a sequence of zero or more characters from the 1064
ISO/IEC 10646-1 character set prefixed and terminated by the double quote character ("). In 1065
double-byte character strings, the five-character combination of the dollar sign ($) followed by 1066
four hexadecimal digits shall be interpreted as the hexadecimal representation of the sixteen-1067
bit character code, as shown in feature 2 of Table 6. 1068

Two-character combinations beginning with the dollar sign shall be interpreted as shown in 1069
Table 7 when they occur in character strings. 1070

— 30 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 6 - Character string literal features 1071

No. Example Explanation

1 Single-byte characters or character strings

 '' Empty string (length zero)

 'A' String of length one or character CHAR containing the single character A

 ' ' String of length one or character CHAR containing the “space” character

 '$'' String of length one or character CHAR containing the “single quote” character

 '"' String of length one or character CHAR containing the “double quote” character

 'RL' String of length two containing CR and LF characters

'$0A' String of length one or character CHAR containing the LF character

'$$1.00' String of length five which would print as “$1.00”

 'ÄË'
'$C4$CB'

Equivalent strings of length two

2 Double-byte characters or character strings

 "" Empty string (length zero)

 "A" String of length one or character WCHAR containing the single character A

 " " String of length one or character WCHAR containing the “space” character

 "'" String of length one or character WCHAR containing the “single quote” character

 "$"" String of length one or character WCHAR containing the “double quote” character

 "RL" String of length two containing CR and LF characters

 "$$1.00" String of length five which would print as “$1.00”

 "ÄË"
"$00C4$00CB"

Equivalent strings of length two

3 Single-byte typed characters or string literals

 STRING#'OK'

CHAR#’X’

String of length two containing two single-byte characters
Character CHAR containing the single-byte character X

4 Double-byte typed string literals

 WSTRING#”OK”

WCHAR#”X”

String of length two containing two double-byte characters
Character WCHAR containing the single-byte character X

NOTE If a particular implementation supports feature 4 but not feature 2, the implementor may specify imple-
mentation-dependent syntax and semantics for the use of the double-quote character.

Table 7 - Two-character combinations in character strings 1072

No. Combination Interpretation when printed

1 $$ Dollar sign

2 $' Single quote

3 $L or $l Line feed

4 $N or $n Newline

5 $P or $p Form feed (page)

6 $R or $r Carriage return

7 $T or $t Tab

8 $" Double quote

— 31 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

NOTE 1 The “newline” character provides an implementation-independent means of defining the end of a line of
data for both physical and file I/O; for printing, the effect is that of ending a line of data and resuming printing at
the beginning of the next line.

NOTE 2 The $' combination is only valid inside single quoted string literals.

NOTE 3 The $" combination is only valid inside double quoted string literals.

6.2.3 Time literals 1073

6.2.3.1 General 1074

The need to provide external representations for two distinct types of time-related data is rec-1075
ognized: duration data for measuring or controlling the elapsed time of a control event, and 1076
time of day data (which may also include date information) for synchronizing the beginning or 1077
end of a control event to an absolute time reference. 1078

Duration and time of day literals shall be delimited on the left by the keywords defined in 6.2.3. 1079

6.2.3.2 Duration 1080

Duration data shall be delimited on the left by the keyword T# or TIME#. The representation of 1081
duration data in terms of days, hours, minutes, seconds, and milliseconds, or any combination 1082
thereof, shall be supported as shown in Table 8. The least significant time unit can be written 1083
in real notation without an exponent. 1084

The units of duration literals can be separated by underline characters. 1085

“Overflow” of the most significant unit of a duration literal is permitted, for example, the nota-1086
tion T#25h_15m is permitted. 1087

Time units, for example, seconds, milliseconds, etc., can be represented in upper- or lower- 1088
case letters. 1089

As illustrated in Table 8, both positive and negative values are allowed for durations. 1090

Table 8 - Duration literal features 1091

No. Feature description Examples

Duration literals without underlines

1a short prefix T#14ms T#-14ms T#14.7s T#14.7m
T#14.7h t#14.7d t#25h15m
t#5d14h12m18s3.5ms

1b long prefix TIME#14ms TIME#-14ms time#14.7s

Duration literals with underlines

2a short prefix t#25h_15m t#5d_14h_12m_18s_3.5ms

2b long prefix TIME#25h_15m
time#5d_14h_12m_18s_3.5ms

6.2.3.3 Time of day and date 1092
Prefix keywords for time of day and date literals shall be as shown in Table 9. As illustrated in 1093
Table 10, representation of time-of-day and date information shall be as specified by the syntax 1094
given in Annex B. 1095

Table 9 - Date and time of day literals 1096

No. Feature description Prefix Keyword

1 Date literals (long prefix) DATE#

2 Date literals (short prefix) D#

3 Time of day literals (long prefix) TIME_OF_DAY#

— 32 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

4 Time of day literals (short prefix) TOD#

5 Date and time literals (long prefix) DATE_AND_TIME#

6 Date and time literals (short prefix) DT#

Table 10 - Examples of date and time of day literals 1097

Long prefix notation Short prefix notation

DATE#1984-06-25
date#1984-06-25

D#1984-06-25
d#1984-06-25

TIME_OF_DAY#15:36:55.36
time_of_day#15:36:55.36

TOD#15:36:55.36
tod#15:36:55.36

DATE_AND_TIME#1984-06-25-15:36:55.36
date_and_time#1984-06-25-15:36:55.36

DT#1984-06-25-15:36:55.36
dt#1984-06-25-15:36:55.36

6.3 Data types 1098

6.3.1 General 1099

A number of elementary (pre-defined) data types are recognized by this standard. Additionally, 1100
generic data types are defined for use in the definition of overloaded functions. A mechanism 1101
for the user or manufacturer to specify additional data types is also defined. 1102

6.3.2 Elementary data types 1103

The elementary data types, keyword for each data type, number of bits per data element, and 1104
range of values for each elementary data type shall be as shown in Table 11. 1105

Table 11 - Elementary data types 1106

No. Keyword Data type N a

1 BOOL Boolean 1 h

2 SINT Short integer 8 c

3 INT Integer 16 c

4 DINT Double integer 32 c

5 LINT Long integer 64 c

6 USINT Unsigned short integer 8 d

7 UINT Unsigned integer 16 d

8 UDINT Unsigned double integer 32 d

9 ULINT Unsigned long integer 64 d

10 REAL Real numbers 32 e

11 LREAL Long reals 64 f

12 TIME Duration -- b

13 DATE Date (only) -- b

14 TIME_OF_DAY or TOD Time of day (only) -- b

15 DATE_AND_TIME or DT Date and time of Day -- b

16 STRING Variable-length single-byte character string 8 i,g

16a CHAR Single-byte character 8g

17 BYTE Bit string of length 8 8 j,g

— 33 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

18 WORD Bit string of length 16 16 j,g

19 DWORD Bit string of length 32 32 j,g

20 LWORD Bit string of length 64 64 j,g

21 WSTRING Variable-length double-byte character string 16 i,g

21a WCHAR Double-byte character 16g

a Entries in this column shall be interpreted as specified in the footnotes.
b The range of values and precision of representation in these data types is implementation-dependent.
c The range of values for variables of this data type is from -(2N-1) to (2N-1)-1.
d The range of values for variables of this data type is from 0 to (2N)-1.
e The range of values for variables of this data type shall be as defined in IEC 60559 for the basic single width

floating-point format.
f The range of values for variables of this data type shall be as defined in IEC 60559 for the basic double width

floating-point format.
g A numeric range of values does not apply to this data type.
h The possible values of variables of this data type shall be 0 and 1, corresponding to the keywords FALSE and

TRUE, respectively.
i The value of N indicates the number of bits/character for this data type.
j The value of N indicates the number of bits in the bit string for this data type.

6.3.3 Generic data types 1107
In addition to the data types shown in Table 11, the hierarchy of generic data types shown in 1108
Figure 4 can be used in the specification of inputs and outputs of standard functions and func-1109
tion blocks (see 6.5.2.5). Generic data types are identified by the prefix “ANY”. The use of ge-1110
neric data types is subject to the following rules: 1111

a) Generic data types shall not be used in user-declared program organization units. 1112

b) The generic type of a subrange derived type (Table 12, feature 3) shall be ANY_INT. 1113

c) The generic type of a directly derived type (Table 12, feature 1) shall be the same as the 1114
generic type of the elementary type from which it is derived. 1115

d) The generic type of all other derived types defined in Table 12 shall be ANY_DERIVED. 1116

 1117
ANY

 ANY_DERIVED

 ANY_ELEMENTARY

 ANY_MAGNITUDE

 ANY_NUM

 ANY_REAL

 REAL, LREAL

 ANY_INT

 SINT, INT, DINT, LINT,

USINT, UINT, UDINT, ULINT

 TIME

 ANY_BIT

 BOOL, BYTE, WORD, DWORD, LWORD

 ANY_STRING

 STRING, WSTRING,

CHAR, WCHAR

— 34 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 ANY_DATE

 DATE_AND_TIME, DATE, TIME_OF_DAY

Figure 4 - Hierarchy of generic data types 1118

6.3.4 Derived data types 1119

6.3.4.1 General 1120

This subclause defines the requirements for the declaration, initialization and usage of derived 1121
(i.e., user- or manufacturer-specified) data types. 1122

6.3.4.2 Declaration 1123

Derived data types can be declared using the TYPE...END_TYPE textual construction shown 1124
in Table 12. These derived data types can then be used, in addition to the elementary data 1125
types defined in 6.3.2, in variable declarations as defined in 6.4.4. 1126

 Enumerated Data Type 1127

An enumerated data type declaration specifies that the value of any data element of that 1128
type can only take on one of the values given in the associated list of identifiers, as illus-1129
trated in Table 12. The enumeration list defines an ordered set of enumerated values, start-1130
ing with the first identifier of the list, and ending with the last. Different enumerated data 1131
types may use the same identifiers for enumerated values. The maximum allowed number 1132
of enumerated values is an implementation dependency. 1133

To enable unique identification when used in a particular context, enumerated literals may 1134
be qualified by a prefix consisting of their associated data type name and the '#' sign, 1135
similar to typed literals defined in 6.2. Such a prefix shall not be used inside an enumera-1136
tion list. It is an error if sufficient information is not provided in an enumerated literal to de-1137
termine its value unambiguously. 1138

 Subrange 1139

A subrange declaration specifies that the value of any data element of that type can only 1140
take on values between and including the specified upper and lower limits, as illustrated in 1141
Table 12. It is an error if the value of a subrange type falls outside the specified range of 1142
values. 1143

 Array 1144

An ARRAY declaration specifies that a sufficient amount of data storage shall be allocated 1145
for each element of that type to store all the data which can be indexed by the specified in-1146
dex subrange(s). Thus, any element of type ANALOG_16_INPUT_CONFIGURATION as 1147
shown in Table 12 contains (among other elements) sufficient storage for 16 CHANNEL ele-1148
ments of type ANALOG_CHANNEL_CONFIGURATION. Mechanisms for access to array ele-1149
ments are defined in 6.4.1. The maximum number of array subscripts, maximum array size 1150
and maximum range of subscript values are implementation dependencies. 1151

 Structure 1152

A STRUCT declaration specifies that data elements of that type shall contain sub-elements 1153
of specified types which can be accessed by the specified names. For instance, an ele-1154
ment of data type ANALOG_CHANNEL_CONFIGURATION as declared in Table 12 will con-1155
tain a RANGE sub-element of type ANALOG_SIGNAL_RANGE, a MIN_SCALE sub-element of 1156
type ANALOG_ DATA, and a MAX_SCALE element of type ANALOG_DATA. The maximum 1157
number of structure elements, the maximum amount of data that can be contained in a 1158
structure, and the maximum number of nested levels of structure element addressing are 1159
implementation dependencies. 1160

Structures with explicit layout (keyword LAYOUT_EXPLICIT) shall define explicitly the memory lay-1161
out and endianess of its components using the AT keyword. The offset value given in the AT 1162

— 35 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

clause specifies the byte or word offset of the begin of the memory location of this component rela-1163
tive to the begin of the memory location of the structure. 1164

For components of the elementary data type BOOL the AT clause shall specify additionally a bit 1165
offset. The subrange allowed for bit offsets is 0..7 for using a byte offset and 0..15 for using a word 1166
offset. 1167

It is allowed that the specified memory locations overlap arbitrarily if the keyword OVERLAP is 1168
given. Otherwise overlapping is not allowed. 1169

Arrays contained in a structure with explicit layout shall be packed i.e. they shall not include unused 1170
memory locations. 1171
NOTE Arrays of elements of data type BOOL may end at a memory location with a bit offset unequal 0. 1172

Structures contained in a structure with explicit layout shall also have explicit layout. 1173

Structures with explicit layout shall specify the endianess of the elementary data types using the 1174
keywords BIG_ENDIAN or LITTLE_ENDIAN. The endianess specifies order of the memory location 1175
of the bytes of an elementary data type. 1176

If the keyword BIG_ENDIAN is given the data values are placed in the memory locations beginning 1177
with the highest value byte first and the lowest value byte last. If the keyword LITTLE_ENDIAN is 1178
given the data values are placed in the memory locations beginning with the lowest value byte first 1179
and the highest value byte last. Independently of the endianess the bit offset 0 addresses the low-1180
est value bit of a data type. 1181
EXAMPLE 1182
TYPE L : ULINT := 16#1122_3344_5566_7788; END_TYPE; has the memory location 1183
 for big endian: 16#11, 16#22, 16#33, 16#44, 16#55, 16#66, 16#77, 16#88 1184

for little endian: 16#88, 16#77, 16#66, 16#55, 16#44, 16#33, 16#22, 16#11 . 1185

Table 12 - Data type declaration features – Using keyword TYPE 1186

No. Feature/textual example

1 Direct derivation from elementary types, e.g.:
TYPE
 RU_REAL : REAL;
END_TYPE

2 Enumerated data types, e.g.:
TYPE
 ANALOG_SIGNAL_TYPE : (SINGLE_ENDED, DIFFERENTIAL) ;

END_TYPE

3a Subrange data types, e.g.:
TYPE
 ANALOG_DATA : INT (-4095..4095) ;

END_TYPE

4 Array data types, e.g.:
TYPE
 ANALOG_16_INPUT_DATA : ARRAY [1..16] OF ANALOG_DATA ;

END_TYPE

5 Structured data types, e.g.:
TYPE
 ANALOG_CHANNEL_CONFIGURATION :
 STRUCT
 RANGE : ANALOG_SIGNAL_RANGE ;
 MIN_SCALE : ANALOG_DATA ;
 MAX_SCALE : ANALOG_DATA ;
 END_STRUCT ;
 ANALOG_16_INPUT_CONFIGURATION :
 STRUCT
 SIGNAL_TYPE : ANALOG_SIGNAL_TYPE ;
 FILTER_PARAMETER : SINT (0..99) ;
 CHANNEL : ARRAY [1..16] OF ANALOG_CHANNEL_CONFIGURATION ;
 END_STRUCT ;
END_TYPE

— 36 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Feature/textual example

6 Structured data type with explicit layout
TYPE
 A_buffer: ARRAY [0..150] OF BYTE;
 Com_data: STRUCT LAYOUT_EXPLICIT BIG_ENDIAN OVERLAP
 buffer AT %B0 : A_buffer;
 head AT %B0 : INT;
 length AT %B2 : USINT;
 data1 AT %B3 : ARRAY [1..50] of INT;
 data2 AT %B3 : ARRAY [1..20] of REAL;
 END_STRUCT;
END_TYPE;

NOTE For examples of the use of these types in variable declarations.

a This usage is deprecated and may not appear in future Editions of IEC 61131-3.

6.3.4.3 Initialization 1187

In Table 12 and Table 14 the initialization along with the declaration is shown. 1188

 Enumeration 1189

The default initial value of an enumerated data type shall be the first identifier in the associated 1190
enumeration list, or a value specified by the assignment operator. For instance, as shown in 1191
Table 12 feature 2 and Table 14 feature 2, the default initial values of elements of data types 1192
ANALOG_SIGNAL_TYPE and ANALOG_SIGNAL_RANGE are SINGLE_ENDED and UNIPOLAR_ 1193
1_5V, respectively. 1194

 Subrange 1195

For data types with subranges, the default initial values shall be the first (lower) limit of the 1196
subrange, unless otherwise specified by an assignment operator. For instance, as declared 1197
in table 12, the default initial value of elements of type ANALOG_DATA is -4095, while the 1198
default initial value for the FILTER_PARAMETER sub-element of elements of type 1199
ANALOG_16_ INPUT_CONFIGURATION is zero. In contrast, the default initial value of ele-1200
ments of type ANALOG_DATAZ as declared in table 14 is zero. 1201

 Structure 1202

Structures with explicit layout shall be initialized according to the declared layout. For initialization of 1203
a structure with overlapping components the initialization specified in a textually succeeding is prior 1204
to a textually preceding one. 1205

The default maximum length of elements of type STRING and WSTRING shall be an imple-1206
mentation-dependent value unless specified otherwise by a parenthesized maximum 1207
length (which shall not exceed the implementation-dependent default value) in the associ-1208
ated declaration. 1209

EXAMPLE 1210
If type STR10 is declared by 1211

TYPE STR10 : STRING[10] := 'ABCDEF'; END_TYPE 1212
the maximum length is 10 characters, default initial value is'ABCDEF', and default initial length of data ele-1213
ments of type STR10 are 6 characters, 1214

The maximum allowed length of STRING and WSTRING variables is an implementation de-1215
pendency. 1216

For other derived data types, the default initial values, unless specified otherwise by the use of 1217
the assignment operator := in the TYPE declaration, shall be the default initial values of the 1218
underlying elementary data types as defined in Table 13. Further examples of the use of the 1219
assignment operator for initialization are given in 6.4.3. 1220

 1221

— 37 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 13 - Default initial values of elementary data types 1222

Data type(s) Initial value

BOOL, SINT, INT, DINT, LINT 0

USINT, UINT, UDINT, ULINT 0

BYTE, WORD, DWORD, LWORD 0

REAL, LREAL 0.0

TIME T#0S

DATE D#0001-01-01

TIME_OF_DAY TOD#00:00:00

DATE_AND_TIME DT#0001-01-01-00:00:00

STRING '' (the empty string)

WSTRING "" (the empty string)

CHAR '$00'

WCHAR "$0000"

 1223

— 38 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 14 - Data type initial value declaration features 1224

No. Feature/textual example

1 Initialization of directly derived types, e.g.:
TYPE
 FREQ : REAL := 50.0 ;
END_TYPE

2 Initialization of enumerated data types, e.g.:
TYPE
 ANALOG_SIGNAL_RANGE :
 (BIPOLAR_10V, (* -10 to +10 VDC *)
 UNIPOLAR_10V, (* 0 to +10 VDC *)
 UNIPOLAR_1_5V, (* + 1 to + 5 VDC *)
 UNIPOLAR_0_5V, (* 0 to + 5 VDC *)
 UNIPOLAR_4_20_MA, (* + 4 to +20 mADC *)
 UNIPOLAR_0_20_MA (* 0 to +20 mADC *)
) := UNIPOLAR_1_5V;
END_TYPE

3 Initialization of subrange data types, e.g.:
TYPE
 ANALOG_DATAZ : INT (-4095 .. 4095) := 0 ; (* Initialized to zero *)
END_TYPE

4 Initialization of array data types, e.g.:
TYPE ANALOG_16_INPUT_DATAI :
 ARRAY [1..16] OF ANALOG_DATAZ := [8(-4095), 8(4095)];
END_TYPE

5 Initialization of structured data type elements, e.g.:
TYPE ANALOG_CHANNEL_CONFIGURATIONI :
 STRUCT
 RANGE : ANALOG_SIGNAL_RANGE ;
 MIN_SCALE : ANALOG_DATA := -4095 ; (* ANALOG_DATA is defined *)
 MAX_SCALE : ANALOG_DATA := 4095 ; (* in Table 12, feature 3 *)
 END_STRUCT;
END_TYPE

6 Initialization of derived structured data types, e.g.:
TYPE
 ANALOG_CHANNEL_CONFIGZ :
 ANALOG_CHANNEL_CONFIGURATIONI := (MIN_SCALE := 0, MAX_SCALE := 4000);
END_TYPE

7 Structured data type with explicit layout
TYPE
A_buffer: ARRAY [0..150] OF BYTE := 151(16#01);
Com_data: STRUCT LAYOUT_EXPLICIT BIG_ENDIAN OVERLAP
 buffer AT %B0 : A_buffer := 151(16#22);
 // overrides initialization of Abuffer
 head AT %B0 : INT := 19; // overrides initialization of buffer
 length AT %B2 : USINT := 5; // overrides initialization of buffer
 data1 AT %B3 : ARRAY [1..50] of INT;
 data2 AT %B3 : ARRAY [1..20] of REAL;
END_STRUCT;

END_TYPE;

6.3.4.4 Usage of TYPE 1225

The usage of variables which are declared to be of derived data types shall conform to the fol-1226
lowing rules: 1227

a) A single-element variable as defined in 6.4.2, of a derived type, can be used anywhere that 1228
a variable of its base (parent's) type can be used, for example variables of the types 1229
RU_REAL and FREQ as shown in Table 12 and Table 14 can be used anywhere that a vari-1230
able of type REAL could be used, and variables of type ANALOG_DATA can be used any-1231
where that a variable of type INT could be used. 1232

— 39 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

This rule can be applied recursively. For example, given the declarations below, the vari-1233
able R3 of type R2 can be used anywhere a variable of type REAL can be used: 1234

TYPE R1 : REAL := 1.0; END_TYPE 1235
TYPE R2 : R1; END_TYPE 1236
VAR R3 : R2; END_VAR 1237

b) An element of a multi-element variable, as defined in 6.4.2, can be used anywhere the 1238
base (parent) type can be used, for example, given the declaration of ANALOG_16_ 1239
INPUT_DATA in Table 12 and the declaration 1240

 VAR INS : ANALOG_16_INPUT_DATA; END_VAR 1241

the variables INS[1] through INS[16] can be used anywhere that a variable of type INT 1242
could be used. 1243

Similarly, given the definition of Com_data in Table 12 and the declarations 1244
VAR telegram : Com_data; END_VAR 1245

the variable telegram.length can be used anywhere that a variable of type USINT 1246
could be used. 1247
This rule can also be applied recursively, for example, given the declarations of 1248
ANALOG_16_INPUT_CONFIGURATION, ANALOG_CHANNEL_CONFIGURATION and ANALOG_ 1249
DATA in Table 12 and the declaration 1250

 VAR CONF : ANALOG_16_INPUT_CONFIGURATION; END_VAR 1251

the variable CONF.CHANNEL[2].MIN_SCALE can be used anywhere that a variable of type 1252
INT could be used. 1253

6.4 Variables 1254

6.4.1 General 1255
In contrast to the external representations of data described in 6.2, variables provide a means 1256
of identifying data objects whose contents may change, for example, data associated with the 1257
inputs, outputs, or memory of the programmable controller. A variable can be declared to be 1258
one of the elementary types defined in 6.3.2, or one of the derived types which are declared as 1259
defined in 6.3.4.2. 1260

6.4.2 Representation 1261

6.4.2.1 General 1262
A single-element variable is defined as a variable which represents a single data element of 1263
one of the elementary types defined in 6.3.2; a derived enumeration or subrange type as de-1264
fined in 6.3.4.2; or a derived type whose “parentage”, as defined recursively in 6.3.4.4, is 1265
traceable to an elementary, enumeration or subrange type. Subclause 6.4.2 specifies the 1266
means of representing such variables symbolically, or alternatively in a manner which directly 1267
represents the association of the data element with physical or logical locations in the pro-1268
grammable controller’s input, output, or memory structure. 1269

NOTE The use of directly represented variables in the bodies of functions, function block types and program types 1270
limits the reusability of these program organization unit types, for example between programmable controller sys-1271
tems in which physical inputs and outputs are used for different purposes. 1272
Subclause 6.4.2.3 specifies the means of representing multi-element variables, i.e., arrays and 1273
structures. 1274

6.4.2.2 Single-element variables 1275
Identifiers, as defined in 6.1.2, shall be used for symbolic representation of variables. 1276

Direct representation of a single-element variable shall be provided by a special symbol formed 1277
by the concatenation of the percent sign “%” (character code 037 decimal in table 1 – Row 00 of 1278
ISO/IEC 10646-1), a location prefix and a size prefix from Table 15, and one or more unsigned 1279
integers, separated by periods (the “full stop” character, “.”). 1280

— 40 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

In the case that a directly represented variable is used in a location assignment to an internal 1281
variable in the declaration part of a program or a function block type , an asterisk “*” shall be 1282
used in place of the size prefix and the one or several unsigned integers in the concatenation 1283
to indicate that the direct representation is not yet fully specified. The percent sign and the lo-1284
cation prefix I, Q or M from Table 15 shall always be present in the direct representation. 1285

In both cases, the use of this feature requires that the location of the variable so declared shall 1286
be fully specified inside the VAR_CONFIG...END_VAR construction of the configuration as de-1287
fined in 6.7 for every instance of the containing type. 1288

It is an error if any of the full specifications in the VAR_CONFIG...END_VAR construction is 1289
missing for any incomplete address specification expressed by the asterisk notation in any in-1290
stance of programs or function block types which contain such incomplete specifications. 1291

EXAMPLES 1292
%QX75 and %Q75 Output bit 75 1293
%IW215 Input word location 215 1294
%QB7 Output byte location 7 1295
%MD48 Double word at memory location 48 1296
%IW2.5.7.1 See explanation below 1297
%Q* Output at a not yet specified location 1298

The manufacturer shall specify the correspondence between the direct representation of a 1299
variable and the physical or logical location of the addressed item in memory, input or output. 1300
When a direct representation is extended with additional integer fields separated by periods, it 1301
shall be interpreted as a hierarchical physical or logical address with the leftmost field repre-1302
senting the highest level of the hierarchy, with successively lower levels appearing to the right. 1303
For instance, the variable %IW2.5.7.1 may represent the first “channel” (word) of the seventh 1304
“module” in the fifth “rack” of the second “I/O bus” of a programmable controller system. 1305

NOTE The use of hierarchical addressing to permit a program in one programmable controller system to access 1306
data in another programmable controller shall be considered a language extension. 1307
The use of directly represented variables is permitted in function blocks as defined in 6.5.3, 1308
programs as defined in 6.5.5, and in configurations and resources as defined in 6.7. The maxi-1309
mum number of levels of hierarchical addressing is an implementation dependency. 1310

Table 15 - Location and size prefix features for directly represented variables 1311

No. Prefix Meaning Default data type

1 I Input location

2 Q Output location

3 M Memory location

4 X Single bit size BOOL

5 None Single bit size BOOL

6 B Byte (8 bits) size BYTE

7 W Word (16 bits) size WORD

8 D Double word (32 bits) size DWORD

9 L Long (quad) word (64 bits) size LWORD

10 * Use of an asterisk to indicate a not yet specified location (NOTE 2)

NOTE 1 National standards organizations can publish tables of translations of these prefixes.

NOTE 2 Use of feature 10 in this table requires feature 11 of Table 57 and vice versa.

6.4.2.3 Partial access of ANY_BIT variables 1312

For variables of the data type ANY_BIT (BYTE, WORD, DWORD, LWORD) as defined in 6.3.3 a 1313
partial access of a bit, byte, word and double word of the variable is defined in Table 16. To 1314

— 41 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

address the part of the variable the size prefix as defined for directly represented variables in 1315
Table 15 feature 4 to 9 (X, B, W, D, L) is used in combination with a constant integer 1316
number (0 to max) for the address within the variable. 0 refers to the least significant and max 1317
refers to the most significant part. 1318

EXAMPLE: 1319
 Var * 1320
 Bo : BOOL; 1321
 By : BYTE; 1322
 Wo : WORD; 1323
 Do : DLWORD; 1324
 Lo : LWORD; 1325
 END_VAR; 1326
 1327
 Bo := By.X0; // bit 0 of By 1328
 Bo := By.7; // bit 7 of By; X is default and may be omitted. 1329
 Bo := Lo.63 // bit 63 of Lo 1330
 By := Wo.B1; // byte 1 of Wo; 1331
 By := Do.B7; // byte 7 of Wo; . 1332

Table 16 - Partial access of ANY_BIT variables 1333

No. Data type Access to Syntax

1a BYTE bits <variable name>.X0 to
<variable name>.X7 (Note)

1b WORD bits <variable name>.X0 to
<variable name>.X15 (Note)

1c DWORD bits <variable name>.X0 to
<variable name>.X31 (Note)

1d LWORD bits <variable name>.X0 to
<variable name>.X63 (Note)

2a WORD bytes <variable name>.B0 to
<variable name>.B1

2b DWORD bytes <variable name>.B0 to
<variable name>.B3

2c LWORD bytes <variable name>.B0 to
<variable name>.B7

3a DWORD words <variable name>.W0 to
<variable name>.W1

3b LWORD words <variable name>.W0 to
<variable name>.W3

4 LWORD dwords <variable name>.D0 to
<variable name>.D1

Note The bit access prefix X may be omitted according Table 15 feature 5.
Example: By.X7 is equivalent to By.7.

 1334
[Editor’s note: Syntax in annex B to be done.] 1335
An alternative to the partial access defined above is possible with an array using the (comput-1336
able) array index as defined in 6.4.4.1. 1337

6.4.2.4 Multi-element variables 1338

The multi-element variable types defined in this standard are arrays and structures. 1339

 Array 1340

An array is a collection of data elements of the same data type referenced by one or more 1341
subscripts enclosed in brackets and separated by commas. In the ST language defined in 1342
 7.3, a subscript shall be an expression yielding a value corresponding to one of the sub-1343
types of generic type ANY_INT as defined in Figure 4. The form of subscripts in the IL lan-1344

— 42 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

guage defined in 7.2, and the graphic languages defined in 8, is restricted to single-1345
element variables or integer literals. 1346

EXAMPLE 1 1347
A usage of array variables in the ST language could be: 1348
 OUTARY[%MB6,SYM] := INARY[0] + INARY[7] – INARY[%MB6] * %IW62; 1349
It shall be an error if the value of a subscript is outside the range specified in the declara-1350
tion of the variable. 1351

 Structure 1352

A structured variable is a variable which is declared to be of a type which has previously 1353
been specified to be a data structure, i.e., a data type consisting of a collection of named 1354
elements. 1355

An element of a structured variable shall be represented by two or more identifiers or array 1356
accesses separated by single periods (.). The first identifier represents the name of the 1357
structured element, and subsequent identifiers represent the sequence of component 1358
names to access the particular data element within the data structure. 1359

EXAMPLE 2 1360
If the variable MODULE_5_CONFIG has been declared to be of type ANALOG_16_INPUT_CONFIGURATION as 1361
shown in table 12, the following statements in the ST language defined in 7.3 would cause the value 1362
SINGLE_ENDED to be assigned to the element SIGNAL_TYPE of the variable MODULE_5_CONFIG, while the 1363
value BIPOLAR_10V would be assigned to the RANGE sub-element of the fifth CHANNEL element of 1364
MODULE_5_CONFIG: 1365
 MODULE_5_CONFIG.SIGNAL_TYPE := SINGLE_ENDED; 1366
 MODULE_5_CONFIG.CHANNEL[5].RANGE := BIPOLAR_10V; 1367

6.4.2.5 Variable-length arrays 1368
Variable-length arrays can only be used as input, output or in-out parameters. The count of ar-1369
ray dimensions of actual and formal parameter shall be the same. They are specified using an 1370
asterisk as an undefined subrange specification for the index ranges. 1371

EXAMPLE 1 1372
 VAR_INPUT A: ARRAY [* , * , *] OF INT; END_VAR 1373

Variable-length arrays provide the means to programs, functions, function blocks, and methods 1374
or function blocks to use arrays of different index ranges. 1375

To handle the variable-length arrays the following standard functions shall be provided: 1376

— 43 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 17 - Variable-length array features 1377

No. Feature description Examples

Variable-length array declaration

1 ARRAY [*, *, …] VAR_IN_OUT

 A: ARRAY [*, *] OF INT;

END_VAR;

Standard functions for variable-length arrays

 Graphical Usage example in ST
2 Get lower bound of an array:

 +------------+
 ! LOWERBOUND !
ARRAY ----! ARR !--- DINT
UINT -----! DIM !
 +----------- +

Get lower bound of the 2nd dimention of the array A::
low2 := LOWERBOUND (A, 2);

3 Get upper bound of an array:
 +------------+
 ! UPPERBOUND !
ARRAY ----! ARR !--- DINT
UINT -----! DIM !
 +----------- +

Get upper bound of the 2nd dimention of the array A::
up2 := UPPERBOUND (A, 2);

 1378
EXAMPLE 2 1379
 A1: ARRAY [1..10] OF INT := 10(1); 1380
 A2: ARRAY [1..20, -2..2] OF INT := 20(5(1)): 1381

LOWERBOUND (A1, 1) 1 1382
UPPERBOUND (A1, 1) 10 1383
LOWERBOUND (A2, 1) 1 1384
UPPERBOUND (A2, 1) 20 1385
LOWERBOUND (A2, 2) -2 1386
UPPERBOUND (A2, 2) 2 1387

 1388
EXAMPLE 3 Array Summation 1389
 FUNCTION SUM: INT; 1390

VAR_IN_OUT: A: ARRAY [*] OF INT; END_VAR; 1391
VAR i, sum2: DINT; END_VAR; 1392
 1393
sum2:= 0; 1394
FOR i:= LOWERBOUND(A,1) TO UPPERBOUND(A,1) 1395
 sum2:= sum2 + A[1]; 1396
 END_FOR; 1397
SUM:= sum2; 1398
END_FUNCTION; 1399
 1400
SUM (A1) 10 1401
SUM (A2[1]) 5 1402

 1403
EXAMPLE 4 Matrix Multiplication 1404

FUNCTION MATRIX_MUL: VOID; 1405
VAR_INPUT 1406
A: ARRAY [*, *] OF INT; 1407
B: ARRAY [*, *] OF INT; 1408
END_VAR; 1409
VAR_OUTPUT 1410
C: ARRAY [*, *] OF INT; 1411
END_VAR; 1412
VAR i, j, k, s: INT; END_VAR; 1413
 1414
FOR i:= LOWERBOUND(A,1) TO UPPERBOUND(A,1) 1415
 FOR j:= LOWERBOUND(B,2) TO UPPERBOUND(B,2) 1416
 S:= 0; 1417
 FOR k:= LOWERBOUND(A,2) TO UPPERBOUND(A,2) 1418
 s:= S+ A[i,k] * B[k,j]; 1419
 END_FOR; 1420
 C[I,j]:= s; 1421
 END_FOR; 1422
 END_FOR; 1423
END_FUNCTION; 1424

— 44 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 1425
Usage: 1426
VAR 1427
A: ARRAY [1..5, 1..3] OF INT; 1428
B: ARRAY [1..3, 1..4] OF INT; 1429
C: ARRAY [1..3, 1..4] OF INT; 1430
END_VAR 1431
 1432
MATRIX_MUL (A, B, C); 1433

6.4.3 Initialization 1434
When a configuration element (resource or configuration) is “started” as defined in 6.7, each of 1435
the variables associated with the configuration element and its programs can take on one of 1436
the following initial values: 1437

• the value the variable had when the configuration element was “stopped” (a retained 1438
value); 1439

• a user-specified initial value; 1440

• the default initial value for the variable’s associated data type. 1441

The user can declare that a variable is to be retentive by using the RETAIN qualifier specified 1442
in Table 18, when this feature is supported by the implementation. 1443

The initial value of a variable upon starting of its associated configuration element shall be de-1444
termined according to the following rules: 1445

1) If the starting operation is a “warm restart” as defined in IEC 61131-1, the initial values of 1446
retentive variables shall be their retained values as defined above. 1447

2) If the operation is a “cold restart as defined in IEC 61131-1, the initial values of retentive 1448
variables shall be the user-specified initial values or the default value for the associated 1449
data type of any variable for which no initial value is specified by the user. 1450

3) Non-retained variables shall be initialized to the user-specified initial values, or to the de-1451
fault value for the associated data type of any variable for which no initial value is specified 1452
by the user. 1453

4) Variables which represent inputs of the programmable controller system as defined in IEC 1454
61131-1 shall be initialized in an implementation-dependent manner. 1455

6.4.4 Declaration 1456
Each declaration of a program organization unit type (i.e., each declaration of a program, func-1457
tion, or function block) shall contain at its beginning at least one declaration part which speci-1458
fies the types (and, if necessary, the physical or logical location) of the variables used in the 1459
organization unit. This declaration part shall have the textual form of one of the keywords VAR, 1460
VAR_INPUT, or VAR_OUTPUT as defined in Table 18, followed in the case of VAR by zero or 1461
one occurrence of the qualifiers RETAIN,NON_RETAIN or the qualifier CONSTANT, and in the 1462
case of VAR_INPUT or VAR_OUTPUT by zero or one occurrence of the qualifier RETAIN or 1463
NON_RETAIN, followed by one or more declarations separated by semicolons and terminated 1464
by the keyword END_VAR. When a programmable controller supports the declaration by the 1465
user of initial values for variables, this declaration shall be accomplished in the declaration 1466
part(s) as defined in this subclause. 1467

Table 18 - Variable declaration keywords 1468

Keyword Variable usage

VAR Internal to organization unit

VAR_INPUT Externally supplied, not modifiable within organization unit

VAR_OUTPUT Supplied by organization unit to external entities

VAR_IN_OUT Supplied by external entities – can be modified within organization unit

— 45 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

VAR_EXTERNAL Supplied by configuration via VAR_GLOBAL (6.7.2)
Can be modified within organization unit

VAR_GLOBAL Global variable declaration (6.7.2)

VAR_ACCESS Access path declaration (6.7.2)

VAR_TEMP Temporary storage for variables in function blocks and programs (6.4.4)

VAR_CONFIG Instance-specific initialization and location assignment.

RETAINb, c, d, e Retentive variables (see preceding text)

NON_RETAINb,c,d,

e
Non-retentive variables (see preceding text)

CONSTANTa Constant (variable cannot be modified)

AT Location assignment

NOTE 1 The usage of these keywords is a feature of the program organization unit or configuration element in
which they are used.

NOTE 2 Examples of the use of VAR_IN_OUT variables are given in Figure 13 b) and Figure 14.

a The CONSTANT qualifier shall not be used in the declaration of function block instances as described in
 6.5.3.2.

b The RETAIN and NON_RETAIN qualifiers may be used for variables declared in VAR, VAR_INPUT, VAR_
OUTPUT, and VAR_GLOBAL blocks but not in VAR_IN_OUT blocks and not for individual elements of struc-
tures.

c Usage of RETAIN and NON_RETAIN for function block and program instances is allowed. The effect is that all
members of the instance are treated as RETAIN or NON_RETAIN, except if:

- the member is explicitly declared as RETAIN or NON_RETAIN in the function block or program type definition;
- the member itself is a function block.
d Usage of RETAIN and NON_RETAIN for instances of structured data types is allowed. The effect is that all

structure members, also those of nested structures, are treated as RETAIN or NON_RETAIN.
e Both RETAIN and NON_RETAIN are features. If a variable is neither explicitly declared as RETAIN nor as NON_
RETAIN the “warm start” behaviour of the variable is implementation dependent.

Within function blocks and programs, variables can be declared in a VAR_TEMP...END_VAR 1469
construction. These variables are allocated and initialized at each call of an instance of the 1470
program organization unit, and do not persist between calls. 1471

The scope (range of validity) of the declarations contained in the declaration part shall be local 1472
to the program organization unit in which the declaration part is contained. That is, the de-1473
clared variables shall not be accessible to other program organization units except by explicit 1474
argument passing via variables which have been declared as inputs or outputs of those units. 1475

The one exception to this rule is the case of variables which have been declared to be global, 1476
as defined in 6.7.2. Such variables are only accessible to a program organization unit via a 1477
VAR_EXTERNAL declaration. The type of a variable declared in a VAR_EXTERNAL block shall 1478
agree with the type declared in the VAR_GLOBAL block of the associated program, configura-1479
tion or resource. 1480

It shall be an error if: 1481

• any program organization unit attempts to modify the value of a variable that has been de-1482
clared with the CONSTANT qualifier or in a VAR_INPUT block; 1483

• a variable declared as VAR_GLOBAL CONSTANT in a configuration element or program or-1484
ganization unit (the “containing element”) is used in a VAR_EXTERNAL declaration (without 1485
the CONSTANT qualifier) of any element contained within the containing element as illus-1486
trated below. 1487

The maximum number of variables allowed in a variable declaration block is an implementa-1488
tion dependency. 1489

— 46 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 19 - Usages of VAR_GLOBAL, VAR_EXTERNAL and CONSTANT declarations 1490

Declaration in containing element Declaration in contained element Allowed?

VAR_GLOBAL X. VAR_EXTERNAL CONSTANT X Yes

VAR_GLOBAL X... VAR_EXTERNAL X. Yes

VAR_GLOBAL CONSTANT X VAR_EXTERNAL CONSTANT X Yes

VAR_GLOBAL CONSTANT X VAR_EXTERNAL X NO

NOTE The use of the VAR_EXTERNAL construct in a contained element may lead to unanticipated behaviours,
for instance, when the value of an external variable is modified by another contained element in the same con-
taining element.

6.4.4.1 Type assignment 1491

As shown in Table 20, the VAR...END_VAR construction shall be used to specify data types 1492
and retentivity for directly represented variables. This construction shall also be used to specify 1493
data types, retentivity, and (where necessary, in programs and VAR_GLOBAL declarations only) 1494
the physical or logical location of symbolically represented single- or multi-element variables. 1495
The usage of the VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT constructions. 1496

The assignment of a physical or logical address to a symbolically represented variable shall be 1497
accomplished by the use of the AT keyword. Where no such assignment is made, automatic 1498
allocation of the variable to an appropriate location in the programmable controller memory 1499
shall be provided. 1500

The asterisk notation (Table 15, feature 10) can be used in address assignments inside pro-1501
grams and function block types to denote not yet fully specified locations for directly repre-1502
sented variables. 1503

Table 20 - Variable type assignment features – AT keyword 1504

No. Feature/examples

1a Declaration of locations of symbolic variables – AT keyword

 VAR_GLOBAL
 LIM_SW_S5 AT %IX27 : BOOL;

END_VAR

Assigns input bit 27 to the Boolean variable LIM_SW_5
(NOTE 2)

 VAR

 CONV_START AT %QX25 : BOOL;

END_VAR

Assigns output bit 25 to the Boolean variable
CONV_START

 TEMPERATURE AT %IW28: INT; Assigns input word 28 to the integer variable
TEMPERATURE (NOTE 2)

 VAR
 C2 AT %Q* : BYTE;
END_VAR

Assigns not yet located output byte to bitstring vari-
able C2 of length 8 bits

2a Array location assignment – AT keyword

 VAR
 INARY AT %IW6 :
 ARRAY [0..9] OF INT;
END_VAR

Declares an array of 10 integers to be allocated to
contiguous input locations starting at %IW6 (note 2)

— 47 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Feature/examples

3 Automatic memory allocation of symbolic variables

 VAR
 CONDITION_RED : BOOL;

 IBOUNCE : WORD;

 MYDUB : DWORD;

 AWORD, BWORD, CWORD : INT;

 MYSTR: STRING[10];
END_VAR

Allocates a memory bit to the Boolean variable
CONDITION_RED.
Allocates a memory word to the 16-bit string variable
IBOUNCE.
Allocates a double memory word to the 32-bit-string
variable MYDUB.
Allocates 3 separate memory words for the integer
variables AWORD, BWORD, and CWORD
Allocates memory to contain a string with a maximum
length of 10 characters. After initialization, the string
has length 0 and contains the empty string ’’.

4 Array declaration

 VAR
 THREE :
 ARRAY[1..5,1..10,1..8]OF INT;
END_VAR

Allocates 400 memory words (5 · 10 · 8) for a three-
dimensional array of integers

5 Retentive array declaration

 VAR
 RETAIN RTBT :
 ARRAY[1..2, 1..3] OF INT;
END_VAR

Declares retentive array RTBT with “cold restart” initial
values of 0 for all elements

6 Declaration of structured variables

 VAR
 MODULE_8_CONFIG :
 ANALOG_16_INPUT_CONFIGURATION;
END_VAR

Declaration of a variable of derived data type (see
Table 12)

7b Declaration of enumerated variables

 VAR
 Y : (Red, Yellow, Green);
END_VAR

Declaration of an enumerated variable

8c,d Declaration of subrange variables

 VAR
 Z : SINT(5..95);
END_VAR

Declaration of a subrange variable

9 VAR
 com1 : Com_data;
END_VAR

Declaration of a variable of a structure with explicit
layout (see Table 14)

NOTE Initialization of system inputs is implementation-dependent;

a If directly represented variables are explicitly located (%), features 1 to 4 can only be used in PROGRAM and
VAR_GLOBAL declarations. If the asterisk notation of feature 10 in Table 15 is used to indicate instance spe-
cific location assignment of a partly specified directly represented variable, features 1 and 2 can not be
used, and features 3 and 4 can only be used in declarations of internal variables of function blocks and pro-
grams.

b This declaration shall be interpreted to mean that the values of the declared variable are restricted to the
specified enumerated values.

c This declaration shall be interpreted to mean that the values of the declared variable are restricted to the
specified subrange including the declared limit values.

d This usage is deprecated and may not appear in future Editions of IEC 61131-3.

 1505
EXAMPLE 1506
An alternative to a partial bit access to an ANY-BIT variable defined in 6.4.2.3 is: 1507
 TYPE 1508
 X : WORD; 1509
 END_TYPE 1510
 1511
 VAR 1512

— 48 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 XA AT X [ARRAY [0..15] of BOOL; 1513
 B : BOOL; 1514
 I : INT; 1515
 END_VAR; 1516
 1517
 I := 2; 1518
 B := XA [i]; 1519

6.4.4.2 Initial value assignment 1520

The VAR...END_VAR construction can be used as shown in Table 21 to specify initial values 1521
of directly represented variables or symbolically represented single- or multi-element variables. 1522

Initial values can also be specified by using the instance-specific initialization feature provided 1523
by the VAR_CONFIG...END_VAR construct described in 6.7.2 (Table 57, feature 11). Instance 1524
-specific initial values always override type-specific initial values. 1525

NOTE The usage of the VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT constructions is defined in 6.7. 1526

Initial values cannot be given in VAR_EXTERNAL declarations. 1527

During initialization of arrays, the rightmost subscript of an array shall vary most rapidly with 1528
respect to filling the array from the list of initialization values. 1529

Parentheses can be used as a repetition factor in array initialization lists. 1530

EXAMPLE 1 2(1, 2, 3) is equivalent to the initialization sequence 1, 2, 3, 1, 2, 3. 1531
EXAMPLE 2 See Table 21 feature 7. 1532
If the number of initial values given in the initialization list exceeds the number of array entries, 1533
the excess (rightmost) initial values shall be ignored. If the number of initial values is less than 1534
the number of array entries, the remaining array entries shall be filled with the default initial 1535
values for the corresponding data type. In either case, the user shall be warned of this condi-1536
tion during preparation of the program for execution. 1537

When a variable is declared to be of a derived, structured data type as defined in 6.3.4.2, initial 1538
values for the elements of the variable can be declared in a parenthesized list following the 1539
data type identifier, as shown in Table 21. Elements for which initial values are not listed in the 1540
initial value list shall have the default initial values declared for those elements in the data type 1541
declaration. 1542

When a variable is declared to be a function block instance, as defined in 6.5.3.4, initial values 1543
for the inputs, outputs and public variables of the function block can be declared in a parenthe-1544
sized list following the assignment operator that follows the function block type identifier as 1545
shown in Table 21. Elements for which initial values are not listed shall have the default initial 1546
values declared for those elements in the function block declaration. 1547

Table 21 - Variable initial value assignment features 1548

No. Feature/examples

1 a Initialization of directly represented variables

 VAR
 AT %QX5.1 : BOOL := 1;
 AT %MW6 : INT := 8 ;
END_VAR

Boolean type, initial value = 1
Initializes a memory word to integer 8.

2 a Initialization of directly represented retentive variables

 VAR RETAIN
 AT %QW5 : WORD := 16#FF00;
END_VAR

At cold restart, the 8 leftmost bits of the 16-bit string at
output word 5 are to be initialized to 1 and the 8 right-
most bits to 0.

3 a Location and initial value assignment to symbolic variables

 VAR
 VALVE_POS AT %QW28 : INT := 100;
END_VAR

Assigns output word 28 to the integer variable
VALVE_POS with an initial value of 100.

— 49 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Feature/examples

4 a Array location assignment and initialization

 VAR
 OUTARY AT %QW6 :
 ARRAY[0..9] OF INT := [10(1)];
END_VAR

Declares an array of 10 integers to be allocated to con-
tiguous output locations starting at %QW6, each with an
initial value of 1.

5 Initialization of symbolic variables

 VAR
 MYBIT : BOOL := 1;

 OKAY : STRING[10] := 'OK';
END_VAR

Allocates a memory bit to the Boolean variable MYBIT
with an initial value of 1.

Allocates memory to contain a string with a maximum
length of 10 characters.
After initialization, the string has a length of 2 and con-
tains the two-byte sequence of characters 'OK' (deci-
mal 79 and 75 respectively), in an order appropriate for
printing as a character string.

6 Array initialization

 VAR
 BITS : ARRAY[0..7] OF BOOL
 := [1,1,0,0,0,1,0,0];

 TBT : ARRAY [1..2,1..3] OF INT
 := [9,8,3(10),6];
END_VAR

Allocates 8 memory bits to contain initial values
 BITS[0] := 1, BITS[1] := 1,...,
 BITS[6] := 0, BITS[7] := 0.
Allocates a 2-by-3 integer array TBT with initial values
 TBT[1,1] :=9, TBT[1,2] :=8,
 TBT[1,3] :=10, TBT[2,1] :=10,
 TBT[2,2] :=10, TBT[2,3] :=6.

7 Retentive array declaration and initialization

 VAR RETAIN
 RTBT :
 ARRAY[1..2,1..3] OF INT
 := [9,8,3(10)];
END_VAR

Declares retentive array RTBT with “cold restart” initial
values of:
 RTBT[1,1] := 9, RTBT[1,2] := 8,
 RTBT[1,3] := 10, RTBT[2,1] := 10,
 RTBT[2,2] := 10, RTBT[2,3] := 0.

8 Initialization of structured variables

 VAR
 MODULE_8_CONFIG :
 ANALOG_16_INPUT_CONFIGURATION :=
 (SIGNAL_TYPE := DIFFERENTIAL,
 CHANNEL :=
 [4((RANGE := UNIPOLAR_1_5V)),
 (RANGE := BIPOLAR_10_V,
 MIN_SCALE := 0,
 MAX_SCALE := 500)]);
END_VAR

Initialization of a variable of derived data type (see table
12)
This example illustrates the declaration of a non-default
initial value for the fifth element of the CHANNEL array of
the variable MODULE_8_CONFIG.

9 Initialization of constants

 VAR
 CONSTANT PI : REAL := 3.141592;
END_VAR

10 Initialization of function block instances

 VAR
 TempLoop :
 PID :=
 (PropBand := 2.5,
 Integral := T#5s);
END_VAR

Allocates initial values to inputs and outputs of a func-
tion block instance.

a If directly represented variables are explicitly located (%), features1 to 4 can only be used in PROGRAM and
VAR_GLOBAL declarations.

Where constants may be used for initialization, also constant expressions may be used. 1549

 Constant expression 1550

Constant expressions consist of literals, enumeration values, constant variables, and op-1551
erators to connect them to an expression. The constant variables are variables which are 1552

— 50 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

defined inside a variable section which contains the keyword CONSTANT. The rules de-1553
fined for expressions in 7.3.1 shall apply. 1554

EXAMPLE Constant expression 1555
PropBand := 2.5 *Pi/2; // Pi := 3.14159. 1556

6.5 Program organization units 1557

6.5.1 General 1558
The program organization units defined in this part of IEC 61131 are the function, function 1559
block, and program. These program organization units can be delivered by the manufacturer, 1560
or programmed by the user by the means defined in this part of the standard. 1561

Program organization units shall not be recursive; that is, the call of a program organization 1562
unit shall not cause the call of another program organization unit of the same type. 1563

The information necessary to determine execution times of program organization units may 1564
consist of one or more implementation dependencies. 1565

6.5.2 Functions 1566

6.5.2.1 General 1567
For the purposes of programmable controller programming languages, a function is defined as 1568
a program organization unit (POE) which, when executed, yields no (VOID) or exactly one data 1569
element, which is considered to be the function result, and arbitrarily many additional output 1570
elements (VAR_OUTPUT and VAR_IN_OUT). 1571

If a function result exists, it can be multi-valued as any data element, i.e. it can be an array or 1572
structure and the call of a function can be used in textual languages as an operand in an ex-1573
pression. 1574

The keyword VOID indicates that the function has no function result. Then in textual languages 1575
it can not be used as an operand in an expression. 1576

— 51 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

EXAMPLE 1577
 The SIN and COS functions could be used as shown in Figure 5 1578

VAR
 X, Y, Z, RES1, RES2 : REAL;
 EN1, V : BOOL;
END_VAR

RES1 := DIV(IN1 := COS(X), IN2 := SIN(Y), ENO => EN1);
RES2 := MUL(SIN(X), COS(Y));
Z := ADD(EN := EN1, IN1 := RES1, IN2 := RES2, ENO => V);

a) Structured Text (ST) language - see 7.3

b) Function Block Diagram (FBD) language - see 8.3

NOTE This figure shows two different representations of the same functionality. It is not
required to support any automatic transformation between the two forms of representation.

Figure 5 - Examples of function usage 1579

Functions shall contain no internal state information, i.e., call of a function with the same ar-1580
guments (input variables VAR_INPUT and in-out variables VAR_IN_OUT) and the same values 1581
of external variables VAR_EXTERNAL shall always yield the same result values of its output 1582
variables VAR_OUTPUT, in-out variables VAR_IN_OUT, external variables VAR_EXTERNAL 1583
and its function result if any. 1584

Any function type that has already been declared can be used in the declaration of another 1585
program organization unit, as shown in Figure 3. 1586

6.5.2.2 Representation 1587

Functions and their call can be represented either graphically or textually. 1588

In the textual languages defined in 7 of this Part, the call of functions shall be according to the 1589
following rules: 1590

1. Input argument assignment shall follow the rules given in Table 24 a). 1591
2. Assignments of output variables of the function shall be either empty or to variables. 1592

3. Assignments to VAR_IN_OUT arguments shall be variables. 1593

4. Assignments to VAR_INPUT arguments may be empty as in feature 1 of Table 24 a), con-1594
stants, variables or function calls. In the latter case, the function result is used as the actual 1595
argument. 1596

In the graphic languages defined in Clause 7 of this Part, functions shall be represented as 1597
graphic blocks according to the following rules: 1598

— 52 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

a) The form of the block shall be rectangular or square. 1599
b) The size and proportions of the block may vary depending on the number of inputs and 1600

other information to be displayed. 1601
c) The direction of processing through the block shall be from left to right (input variables on 1602

the left and output variables on the right). 1603
d) The function name or symbol, as specified below, shall be located inside the block. 1604
e) Provision shall be made for input and output variable names appearing at the inside left 1605

and right sides of the block respectively when the block represents: 1606

• one of the standard functions defined in 6.5.2.6, when the given graphical form includes 1607
the variable names; or 1608

• any additional function declared as specified in 6.5.2.4. 1609
 This usage is subject to the following provisions: 1610

o Where no names are given for input variables in standard functions, the default 1611
names IN1, IN2, ... shall apply in top-to-bottom order. 1612

o When a standard function has a single unnamed input, the default name IN shall 1613
apply. 1614

o The default names described above may, but need not appear at the inside left-1615
hand side of the graphic representation. 1616

f) An additional input EN and/or output ENO as specified in 6.5.2.3 may be used. If present, 1617
they shall be shown at the uppermost positions at the left and right side of the block, re-1618
spectively. 1619

g) The function result shall be shown at the uppermost position at the right side of the block, 1620
except if there is an ENO output, in which case the function result shall be shown at the 1621
next position below the ENO output. Since the name of the function is used for the assign-1622
ment of its output value as specified in 6.5.3.4, no output variable name shall be shown at 1623
the right side of the block. 1624

h) Argument connections (including function result) shall be shown by signal flow lines. 1625
i) Negation of Boolean signals shall be shown by placing an open circle just outside of the 1626

input or output line intersection with the block. In the character set defined in 6.1.1, this 1627
shall be represented by the upper case alphabetic “O”, as shown in Table 22. 1628

j) All inputs and outputs (including function result) of a graphically represented function shall 1629
be represented by a single line outside the corresponding side of the block, even though 1630
the data element may be a multi-element variable. 1631

k) Function results and function outputs (VAR_OUTPUT) can be connected to a variable, used 1632
as input to other function block instances or functions, or can be left unconnected. 1633

l) It shall be an error if any VAR_IN_OUT variable of any function block call or function call 1634
within a POU is not “properly mapped”. 1635
A VAR_IN_OUT variable is “properly mapped” if it is connected graphically at the left, or 1636
assigned using the “:=” operator in a textual call, to a variable declared (without the 1637
CONSTANT qualifier) in a VAR_IN_OUT, VAR, VAR_OUT, or VAR_EXTERNAL block of the 1638
containing program organization unit, or to a “properly mapped” VAR_IN_OUT of another 1639
contained function block instance or function call. 1640

m) A “properly mapped” (as shown in rule l) above) VAR_IN_OUT variable of a function block 1641
instance or a function call can be connected graphically at the right, or assigned using the 1642
“:=” operator in a textual assignment statement, to a variable declared in a VAR, VAR_OUT 1643
or VAR_EXTERNAL block of the containing program organization unit. It shall be an error if 1644
such a connection would lead to an ambiguous value of the variable so connected. 1645

— 53 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 22 - Graphical negation of Boolean signals 1646

No. Featurea, b Representation

1

Negated input

+---+
---O| |----

+---+

2

Negated output

+---+
----| |O---

+---+

a If either of these features is supported for functions, it shall also be supported for function blocks as de-
fined in 6.5.3, and vice versa.

b The use of these constructs is forbidden for in-out variables.

EXAMPLE 1647
Table 23 illustrates both the graphical and equivalent textual use of functions, including the use of a standard 1648
function (ADD) with no defined formal argument names; a standard function (SHL) with defined formal argu-1649
ment names; the same function with additional use of EN input and negated ENO output; and a user-defined 1650
function (INC) with defined formal argument names. 1651

Table 23 - Usage of formal argument names 1652

Example Explanation

Graphical use of ADD function
(FBD language)
(No formal variable names)

A := ADD(B,C,D); Textual use of ADD function
(ST language)

Graphical use of SHL function
(FBD language)
(Formal argument names)

A := SHL(IN := B,N := C); Textual use of SHL function
(ST language)

Graphical use of SHL function
(FBD language)
(Formal argument names; use of EN input and negated ENO
output)

A := SHL(EN := ENABLE,
 IN := B,
 N := C,
 NOT ENO => NO_ERR);

Textual use of SHL function
(ST language)

Graphical use of user-defined
INC function
(FBD language)
(Formal argument names for VAR_IN_OUT)

A := INC(V := X) ; Textual use of INC function
(ST language)

Features for the textual call of functions are defined in Table 24. The textual call of a function 1653
shall consist of the function name followed by a list of arguments. In the ST language defined 1654
in 7.3, the arguments shall be separated by commas and this list shall be delimited on the left 1655
and right by parentheses. 1656

— 54 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

In feature 1 of Table 24 (formal call), the argument list has the form of a set of assignments of 1657
actual values to the formal argument names (formal argument list), that is: 1658

a) assignments of values to input and in-out variables using the ":=" operator, and 1659

b) assignments of the values of output variables to variables using the "=>" operator. 1660

The ordering of arguments in the list shall not be significant. In feature 1 of Table 24, any vari-1661
able not assigned a value in the list shall have the default value, if any, assigned in the func-1662
tion specification, or the default value for the associated data type. 1663

In feature 2 of Table 24 (non-formal call), the argument list shall contain exactly the same 1664
number of arguments, in exactly the same order and of the same data types as given in the 1665
function definition, except the execution control arguments EN and ENO. 1666

Table 24 - Textual call of functions for formal and non-formal argument list 1667

Feature Example
No.

Invocation
type

Variable
assignment

Variable
order

Number of
variables

In Structured Text (ST) language

1 formal yes any any A := LIMIT (EN := COND, IN := B,
 MX := 5, ENO => TEMPL);

2a non-formal no fixed fixed A := LIMIT (1, B, 5);

NOTE 1 In the example given in feature 1, the MN variable will have the default value 0 (zero).

NOTE 2 The example given in feature 2 is semantically equivalent to the following call with formal variable as-
signments (feature 1):

A := LIMIT (EN := TRUE, MN := 1, IN := B, MX := 5);

a Feature 2 is required for call of any of the standard functions without formal names for one or more input vari-
ables, but feature 1 shall be used if EN/ENO is necessary in function calls.

6.5.2.3 Execution control using EN and ENO 1668

As shown in table 20, an additional Boolean EN (Enable) input or ENO (Enable Out) output, or 1669
both, can be provided by the manufacturer or user according to the declarations 1670

VAR_INPUT EN: BOOL := 1; END_VAR 1671
VAR_OUTPUT ENO: BOOL; END_VAR 1672

When these variables are used, the execution of the operations defined by the function shall be 1673
controlled according to the following rules: 1674

1. If the value of EN is FALSE (0) when the function is called, the operations defined by the 1675
function body shall not be executed and the value of ENO shall be reset to FALSE (0) by the 1676
programmable controller system. 1677

2. Otherwise, the value of ENO shall be set to TRUE (1) by the programmable controller system, 1678
and the operations defined by the function body shall be executed. These operations can in-1679
clude the assignment of a Boolean value to ENO. 1680

3. If any of the errors defined in the table in Annex E for subclauses of 6.5.2.6 occurs during 1681
the execution of one of the standard functions, the ENO output of that function shall be reset 1682
to FALSE (0) by the programmable controller system, or the manufacturer shall specify other 1683
disposition of such an error according to the provisions of 5.1. 1684

4. If the ENO output is evaluated to FALSE(0), the values of all function outputs (VAR_ 1685
OUTPUT, VAR_IN_OUT and function result) shall be considered to be implementation-1686
dependent. 1687

NOTE It is a consequence of these rules that the ENO output of a function must be explicitly examined by the call-1688
ing entity if necessary to account for possible error conditions. 1689

— 55 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 25 - Use of EN input and ENO output 1690

No. Feature Examplea

1 Use of EN and ENO
Shown in LD (Ladder Diagram)

2 Usage without EN and ENO
Shown in FBD (Function Block Diagram)

3 Usage with EN and without ENO
Shown in FBD (Function Block Diagram)

4 Usage without EN and with ENO
Shown in FBD (Function Block Diagram)

a The graphical languages chosen for demonstrating the features above are given only as examples. An
implementer may specify that a feature of this table is supported in all languages, or in a particular lan-
guage. When a feature is supported in a particular language, an appropriate suffix shall be employed,
namely f, l, i, or s for FBD, LD, IL or ST languages. For instance, the first example given above could be
for feature 1 or 1l; the second example could be for feature 2 or 2f, etc.

6.5.2.4 Declaration 1691

Features for the textual and graphical declaration of functions are listed in Table 26. 1692

As illustrated in Figure 6, the textual declaration of a function shall consist of the following 1693
elements: 1694

1. The keyword FUNCTION, followed by an identifier specifying the name of the function being 1695
declared 1696

2. If a function result is available a colon ‘:‘, and the data type of the value to be returned by 1697
the function block or if no function block result is available nothing or the keyword ‘VOID’; 1698

3. A VAR_INPUT...END_VAR construct specifying the names and types of the function's input 1699
variables; 1700

4. VAR_IN_OUT...END_VAR and VAR_OUTPUT...END_VAR constructs if required, specifying 1701
the names and types of the function's in-out and output variables; 1702

5. A VAR_EXTERNAL...END_VAR construct, if required, specifying the names and types of 1703
the function's external variables; 1704

6. A VAR...END_VAR construct, if required, specifying the names and types of the function's 1705
internal variables; 1706

7. A function body, written in one of the languages defined in this standard, or another pro-1707
gramming language, which specifies the operations to be performed upon the variable(s) in 1708
order to assign values dependent on the function's semantics to its in-out, output or exter-1709
nal variables and in the case that a function result exists to a variable with the same name 1710
as the function, which represents the function result to be returned by the function (function 1711
result); 1712

8. The terminating keyword END_FUNCTION. 1713

— 56 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

If the generic data types given in Figure 4 are used in the declaration of standard function vari-1714
ables, then the rules for inferring the actual types of the arguments of such functions shall be 1715
part of the function definition. 1716

The variable initialization constructs defined in 6.4.3 can be used for the declaration of default 1717
values of function inputs and initial values of their internal and output variables. 1718

The values of variables which are passed to the function via a VAR_IN_OUT construct can be 1719
modified from within the function. 1720

Table 26 - Function features 1721

No. Description Example

1 In-out variable declaration (textual) VAR_IN_OUT A: INT; END_VAR

2 In-out variable declaration (graphical) See Figure 6 b)

3 Graphical connection of in-out variable to different variables
(graphical)

See Figure 6 d)

The graphic declaration of a function shall consist of the following elements: 1722

1. The bracketing keywords FUNCTION...END_FUNCTION or a graphical equivalent. 1723

2. A graphic specification of the function name and the names, types and possibly initial val-1724
ues of the function's result and variables (input, output and in-out). 1725

3. A specification of the names, types and possibly initial values of the internal variables used 1726
in the function, for example, using the VAR...END_VAR construct. 1727

4. A function body as defined above. 1728
The maximum number of function specifications allowed in a particular resource is an imple-1729
mentation dependency. 1730

EXAMPLE see Figure 6. 1731

FUNCTION SIMPLE_FUN : REAL
 VAR_INPUT
 A, B : REAL; (* External interface specification *)
 C : REAL := 1.0;
 END_VAR

 VAR_IN_OUT COUNT : INT; END_VAR
 VAR COUNTP1 : INT; END_VAR
 COUNTP1 := ADD(COUNT, 1); (*Function body specification *)
 COUNT := COUNTP1;
 SIMPLE_FUN := A*B/C;
END_FUNCTION

a) Textual declaration in ST language

— 57 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

b) Graphical declaration in FBD language

 VAR X, Y, Z, RESULT : REAL;

 VAR COUNT1, COUNT2 : INT;

 …

 RESULT := Simple_FUN (A:= X, B:=Y, C:=Z, COUNT:= COUNT1);

 COUNT2 := COUNT1;

 …

c) Usage of a function in ST language

d) Usage of a function in FBD language

VAR_GLOBAL DataArray: ARRAY [0..1000] OF INT; END_VAR

FUNCTION SPECIAL_FUN : VOID

VAR_INPUT

 FirstIndex : INT;

 LastIndex : INT END_VAR

VAR_OUTPUT

 Sum : INT END_VAR

VAR_EXTERNAL DataArray: ARRAY [0..1000] OF INT; END_VAR

VAR i: INT END_VAR

for I := FirstIndex to LastIndex do

 Sum := Sum+DataArray[i]

end_for

END_FUNCTION

e) Textual declaration of a function with no function result and an external variable

— 58 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 +------------------+
 | SPECIAL_FUN |
10-----|FirstIndex Sum|-----Result
20-----|LastIndex |
 +------------------+

f) Usage of a function with no function result and an external variable

NOTE 1 In a), the input variable is given a defined default value of 1.0 to avoid a “division by
zero” error if the input is not specified when the function is called, for example, if a graphical
input to the function is left unconnected.

NOTE 2 The effect of the functional call in d) is identical to that in c).

Figure 6 - Examples of function declarations and usage

6.5.2.5 Typing, overloading, and type conversion 1732

6.5.2.5.1 Generic Overloading 1733
A standard function, function block type, operator, or instruction is said to be overloaded when 1734
it can operate on input data elements of various types within a generic type designator as de-1735
fined in 6.3.3. 1736

EXAMPLE 1 1737
An overloaded addition function on generic type ANY_NUM can operate on data of types LREAL, REAL, 1738
DINT, INT, and SINT. 1739

When a programmable controller system supports an overloaded standard function, function 1740
block type, operator, or instruction, this standard function, function block type, operator, or in-1741
struction shall apply to all data types of the given generic type which are supported by that sys-1742
tem. 1743

EXAMPLE 2 1744
If a programmable controller system supports the overloaded function ADD and the data types SINT, INT, 1745
and REAL, then the system supports the ADD function on inputs of type SINT, INT, and REAL. 1746

6.5.2.5.2 Typed overloading 1747

When a function which normally represents an overloaded operator is to be typed, i.e., the 1748
types of its inputs and outputs are restricted to a particular elementary or derived data type. 1749
This shall be done by appending an “underline” character followed by the required type, as 1750
shown in Table 27. 1751

An overloaded conversion function of the form TO_xxx or TRUNC_xxx with xxx as the typed 1752
elementary output type can be typed by preceding the required elementary data and a following 1753
“underline” character. 1754

— 59 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 27 - Typed and overloaded functions 1755

No. Feature Example

1a

1b

Overloaded functions

 +----------+
 ANY_ELEMENTARY -----| TO_INT |----INT
 +----------+

2a a

2b a

Typed functions

 +---------------+
 WORD -----| WORD_TO_INT |----INT
 +---------------+

NOTE The overloading of non-standard functions or function block types is beyond the scope of this standard.

a If feature 2 is supported, the manufacturer shall provide a table of which functions are overloaded and which
are typed in the implementation.

6.5.2.5.3 Type conversion 1756

Explicit (overloaded or typed) conversion and implicit type conversion can be used to adapt 1757
data types for the use in expressions and as parameters. 1758

The following table shows which type conversions shall be supported implicitly and explicitly. 1759

Table 28 - Type Conversion 1760

 real integer unsigned bit date &
times char

 Target Data
Type

Source
Data Type L

R
E

A
L

 R
E

A
L

 L
IN

T

 D
IN

T

 IN
T

 S
IN

T

 U
LI

N
T

 U
D

IN
T

 U
IN

T

 U
S

IN
T

 L
W

O
R

D

 D
W

O
R

D

 W
O

R
D

 B
Y

TE

 B
O

O
L

 T
IM

E

 D
T

 D
A

TE

 T
O

D

 W
S

TR
IN

G

 S
TR

IN
G

 W
C

H
A

R

 C
H

A
R

LREAL e e e e e e e e e e - - - - - - - - - - - -

re
al

REAL i e e e e e e e e - e - - - - - - - - - - -

LINT e e e e e e e e e e e e e - - - - - - - - -

DINT i e i e e e e e e e e e e - e - - e - - - -

INT i i i i e e e e e e e e e - - - - - - - - - in
te

ge
r

SINT i i i i i e e e e e e e e - - - - - - - - -

ULINT e e e e e e e e e e e e e - - - - - - - - -

UDINT i e i e e e i e e e e e e - - - - e - - - -

UINT i i i i e e i i e e e e e - - - e - - - - -

un
si

gn
ed

USINT i i i i i e i i i e e e e - - - - - - - - -

— 60 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 real integer unsigned bit date &
times char

 Target Data
Type

Source
Data Type L

R
E

A
L

 R
E

A
L

 L
IN

T

 D
IN

T

 IN
T

 S
IN

T

 U
LI

N
T

 U
D

IN
T

 U
IN

T

 U
S

IN
T

 L
W

O
R

D

 D
W

O
R

D

 W
O

R
D

 B
Y

TE

 B
O

O
L

 T
IM

E

 D
T

 D
A

TE

 T
O

D

 W
S

TR
IN

G

 S
TR

IN
G

 W
C

H
A

R

 C
H

A
R

LWORD e - e e e e e e e e e e e - - - - - - - - -

DWORD - e e e e e e e e e i e e - e - - e - - - -

WORD - - e e e e e e e e i i e - - - e - - - e -

BYTE - - e e e e e e e e i i i - - - - - - - - e

bi
t

BOOL - - e e e e e e e e i i i i - - - - - - - -

TIME - - - e - - - - - - - e - - - - - - - - - -

DT - - - - - - - - - - - - - - - - - - - - - -

DATE - - - - - - - - e - - - e - - - - - - - - -

da
te

 &
 t

im
es

TOD - - - e - - - e - - - e - - - - - - - - - -

WSTRING - - - - - - - - - - - - - - - - - - - e e -

STRING - - - - - - - - - - - - - - - - - - - e - e

WCHAR - - - - - - - - - - - - e - - - - - - i - ech
ar

CHAR - - - - - - - - - - - - - e - - - - - - i e

 1761
Legend 1762

 no data type conversion necessary
- no implicit or explicit data type conversion defined by this standard, the implementation may

support additional data type conversions
i Also implicit data type conversion additional to explicit type conversion allowed
e Explicit data type conversion programmed by the user (as a standard functionality) necessary

because of loss of accuracy, mismatch in the range or possible implementation dependent be-
haviour.

6.5.2.5.4 Explicitly typed or overloaded type conversion 1763
When a programmable controller system requires explicit type conversion for overloaded func-1764
tions then all input and output variables must be of the same type. 1765
More specifically, when the type of the result of a standard function defined in 6.5.2.6 is ge-1766
neric, the actual types of all input variables of the same generic type shall be of the same type 1767
as the actual type of the function value in a given call of the function. If necessary, the type 1768
conversion functions can be used to meet this requirement. 1769

Explicit type conversion shall keep the value and accuracy of the source data type if the value 1770
fits into the target data type. The manufacturer shall define the result if the target data type 1771
cannot provide the same value as the source data type. 1772

— 61 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 VAR
 A : INT ;
 B : INT ;
 C : INT ;
 END_VAR

C := A+B;

NOTE Type conversion is not required in the example shown above.

 VAR
 A : INT ;
 B : REAL ;
 C : REAL;
 END_VAR

C := INT_TO_REAL(A)+B;

 +-------+ +---+
 A---|TO_REAL|---|ADD|---C
 +-------+ | |
 B---------------| |
 +---+

C := TO_REAL(A) + B;

 VAR
 A : INT ;
 B : INT ;
 C : REAL;
 END_VAR

C := INT_TO_REAL(A+B);

 +---+ +-------+
 A---|ADD|---|TO_REAL|---C
 B---| | +-------+
 +---+

C := TO_REAL(A+B);

a) Type declaration
(ST language)

b) Usage (FBD language and ST language)

Figure 7 - Typed and overloaded functions (Example) 1773

 VAR
 A : INT ;
 B : INT ;
 C : INT ;
 END_VAR

C := ADD_INT(A,B);

NOTE Type conversion is not required in the example shown above.

 VAR
 A : INT ;
 B : REAL ;
 C : REAL;
 END_VAR

C := ADD_REAL(INT_TO_REAL(A),B);

 VAR
 A : INT ;
 B : INT ;
 C : REAL;
 END_VAR

C := INT_TO_REAL(ADD_INT(A,B));

a) Type declaration
(ST language)

b) Usage (FBD language and ST language)

Figure 8 - Explicit typed type conversion functions with typed functions Example) 1774

6.5.2.5.5 Implicit and explicit type conversion 1775

When a programmable controller system supports implicit type conversion for overloaded func-1776
tions then input and output variables can be of different types. 1777

Implicit type conversion shall keep the value and accuracy of the data types. Otherwise the 1778
user can use explicit type conversion. Offering this to the user reassures him that his program 1779
will work as expected while saving him time in programming along with some screen real es-1780
tate. 1781

— 62 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

VAR
 PartsRatePerHour : REAL ;
 PartsDone : INT ;
 HoursElapsed : REAL;

 PartsPerShift : REAL;

 ShiftLength : SINT;
END_VAR

Explicit Type Conversion
PartsRatePerHr := INT_TO_REAL(PartsDone) / HoursElapsed;
PartsPerShift := REAL_TO_INT(SINT_TO_REAL(ShiftLength)*
 PartsRatePerHr);

Explicit Overloaded Type Conversion
PartsRatePerHr := TO_REAL(PartsDone) / HoursElapsed;
PartsPerShift := TO_INT(TO_REAL(ShiftLength)*
 PartsRatePerHr);
Implicit Type Conversion
PartsRatePerHr := PartsDone / HoursElapsed;
PartsPerShift := ShiftLength * PartsRatePerHr;

a) Type declaration b) Usage (ST language)

Explicit Type Conversion

Explicit Overloaded Type Conversion

Implicit Type Conversion

c) Usage (FBD language)

Figure 9 - Explicit vs. Implicite type conversion 1782

6.5.2.6 Standard functions 1783

6.5.2.6.1 General 1784

Definitions of functions common to all programmable controller programming languages are 1785
given in this subclause. Where graphical representations of standard functions are shown in 1786
this subclause, equivalent textual declarations may be written as specified in 6.5.2.6. 1787

/

*

INT_TO_REAL

SINT_TO_REAL

HoursElapsed

PartsDone

ShiftLength

PartsPerShift

/

*

HoursElapsed

PartsDone

ShiftLength

PartsPerShift

/

*

TO_REAL

TO_REAL

HoursElapsed

PartsDone

ShiftLength

PartsPerShift

— 63 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

A standard function specified in this subclause to be extensible is allowed to have two or more 1788
inputs to which the indicated operation is to be applied, for example, extensible addition shall 1789
give as its output the sum of all its inputs. The maximum number of inputs of an extensible 1790
function is an implementation dependency. The actual number of inputs effective in a formal 1791
call of an extensible function is determined by the formal input name with the highest position 1792
in the sequence of variable names. 1793

EXAMPLE 1 1794
 The statement X := ADD(Y1,Y2,Y3); 1795
 is equivalent to X := ADD(IN1 := Y1, IN2 := Y2, IN3 := Y3); 1796
EXAMPLE 2 1797
 The statement I := MUX_INT(K:=3,IN0 := 1, IN2 := 2, IN4 := 3); 1798
 is equivalent to I := 0; 1799

6.5.2.6.2 Type conversion functions 1800

As shown in Table 29, type conversion functions shall have the form *_TO_**, where “*” is the 1801
type of the input variable IN, and “**” the type of the output variable OUT, for example, 1802
INT_TO_REAL. The effects of type conversions on accuracy, and the types of errors that may 1803
arise during execution of type conversion operations, are implementation dependencies. 1804

Table 29 - Type conversion function features 1805

No. Graphical form Usage example

Ty
pe

d

 +----------+
 * ---| *_TO_** |--- **
 +----------+

 (*) - Input data type, e.g., INT
 (**) - Output data type, e.g., REAL
 (*_TO_**) - Function name, e.g., INT_TO_REAL

A := INT_TO_REAL(B) ;

1 a, b, e

O
ve

rlo
ad

ed

 +----------+
 * ---| TO_** |--- **
 +----------+

 (*) - Input data type, e.g., INT
 (**) - Output data type, e.g., REAL
 (TO_**) - Function name, e.g., TO_REAL

A := TO_REAL(B) ;

“o
ld

”
ov

er
-

lo
ad

ed

 +----------+
 ANY_REAL---| TRUNC |---ANY_INT
 +----------+

Deprecated
(from 2nd edition)

Ty
pe

d

 +----------+
 ANY_REAL---|*_TRUNC_**|---ANY_INT
 +----------+

(*) - Input data type ANY_REAL
(**) - Output data type ANY_INT
(*_TRUNC_**) - Function name, e.g., REAL_TRUNC_INT

A := REAL_TRUNC_INT(B) ;

2 c

O
ve

rlo
ad

ed

 +----------+
 ANY_REAL---| TRUNC_** |---ANY_INT

 +----------+

A := TRUNC_INT(B) ;

Ty
pe

d

 +-----------+
 * ---|*_BCD_TO_**|--- **
 +-----------+

A := WORD_BCD_TO_INT(B);

3 d

O
ve

r-
lo

ad
ed

 +-------------+

 * ----| BCD_TO_** |--- **

 +-------------+

A := BCD_TO_INT(B);

— 64 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Ty
pe

d

 +-------------+

 ** ----| **_BCD_* |--- *

 +-------------+

A := INT_TO_BCD_WORD(B);

4 d

O
ve

rlo
ad

ed

 +-------------+

 * ----| TO_BCD_** |--- **

 +-------------+

A := TO_BCD_WORD(B);

NOTE 1 Usage examples are given in the ST language.

NOTE 2 Conversion of bitstring data type shall be done in that way that from
(a) a short data type to a longer one leading zeros shall be added or
(b) long data type to a shorter one this is implementation dependent.

a A statement of conformance to feature 1 of this table shall include a list of the specific type conversions sup-
ported, and a statement of the effects of performing each conversion.

b Conversion from type REAL or LREAL to SINT, INT, DINT or LINT shall round according to the convention of
IEC 60559, according to which, if the two nearest integers are equally near, the result shall be the nearest
even integer, e.g.:

REAL_TO_INT (1.6) is equivalent to 2
REAL_TO_INT (-1.6) is equivalent to -2

REAL_TO_INT (1.5) is equivalent to 2
REAL_TO_INT (-1.5) is equivalent to -2

REAL_TO_INT (1.4) is equivalent to 1
REAL_TO_INT (-1.4) is equivalent to -1

REAL_TO_INT (2.5) is equivalent to 2
REAL_TO_INT(-2.5) is equivalent to - 2

d The conversion functions *_BCD_TO_** and **_TO_BCD_* shall perform conversions between variables of
type BYTE, WORD, DWORD, and LWORD and variables of type USINT, UINT, UDINT and ULINT (represented
by "*" and "**" respectively), when the corresponding bit-string variables contain data encoded in BCD format.
For example, the value of USINT_TO_BCD_BYTE(25) would be 2#0010_0101, and the value of
WORD_BCD_TO_UINT (2#0011_0110_1001) would be 369.

c The function TRUNC_* shall be used for truncation toward zero of a REAL or LREAL yielding a variable of one
of the integer types, for instance

 TRUNC_INT (1.6) is equivalent to INT#1
TRUNC_INT (-1.6) is equivalent to INT#-1

 TRUNC_SINT (1.4) is equivalent to SINT#1
TRUNC_SINT (-1.4)is equivalent to SINT#-1.

e When an input or output of a type conversion function is of type STRING or WSTRING, the character string
data shall conform to the external representation of the corresponding data, as specified in 6.2.2, in the
character set defined in 6.1.1.

— 65 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

6.5.2.6.3 Numerical functions 1806
The standard graphical representation, function names, input and output variable types, and 1807
function descriptions of functions of a single numeric variable shall be as defined in Table 30. 1808
These functions shall be overloaded on the defined generic types, and can be typed. For these 1809
functions, the types of the input and output shall be the same. 1810

The standard graphical representation, function names and symbols, and descriptions of arith-1811
metic functions of two or more variables shall be as shown in Table 31. These functions shall 1812
be overloaded on all numeric types, and can be typed.. 1813

The accuracy of numerical functions shall be expressed in terms of one or more implementa-1814
tion dependencies. 1815

It is an error if the result of evaluation of one of these functions exceeds the range of values 1816
specified for the data type of the function output, or if division by zero is attempted. 1817

Table 30 - Standard functions of one numeric variable 1818

Graphical form Usage example in ST

(*) - Input/Output (I/O) type

(**) - Function name

A := SIN(B);

(ST language)

No. Function name I/O type Description

General functions

1 ABS ANY_NUM Absolute value

2 SQRT ANY_REAL Square root

Logarithmic functions

3 LN ANY_REAL Natural logarithm

4 LOG ANY_REAL Logarithm base 10

5 EXP ANY_REAL Natural exponential

Trigonometric functions

6 SIN ANY_REAL Sine of input in radians

7 COS ANY_REAL Cosine in radians

8 TAN ANY_REAL Tangent in radians

9 ASIN ANY_REAL Principal arc sine

10 ACOS ANY_REAL Principal arc cosine

11 ATAN ANY_REAL Principal arc tangent

 1819

— 66 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 31 - Standard arithmetic functions 1820

Graphical form Usage example in ST

(***) - Name or Symbol

A := ADD(B,C,D) ;

 or

A := B+C+D ;

No. a,b Name Symbol Description

Extensible arithmetic functions

1 c ADD + OUT := IN1 + IN2 +... + INn

2 MUL * OUT := IN1 * IN2 *... * INn

Non-extensible arithmetic functions

3 c SUB - OUT := IN1 - IN2

4 d DIV / OUT := IN1 / IN2

5 e MOD OUT := IN1 modulo IN2

6 f EXPT ** Exponentiation: OUT := IN1IN2

7 g MOVE := OUT := IN

NOTE 1 Non-blank entries in the Symbol column are suitable for use as operators in textual languages, as shown
in Table 60 and Table 63.

NOTE 2 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers to the output.

NOTE 3 Usage examples and descriptions are given in the ST.

a When the named representation of a function is supported, this shall be indicated by the suffix “n” in the com-
pliance statement.
 For example, “1n” represents the notation “ADD”.

b When the symbolic representation of a function is supported, this shall be indicated by the suffix “s” in the
compliance statement. For example, “1s” represents the notation “+”.

c The generic type of the inputs and outputs of these functions is ANY_MAGNITUDE

d The result of division of integers shall be an integer of the same type with truncation toward zero,
 for instance, 7/3 = 2 and (-7)/3 = -2.

e IN1 and IN2 shall be of generic type ANY_INT for this function. The result of evaluating this MOD function shall
be the equivalent of executing the following statements in the ST:

 IF (IN2 = 0) THEN OUT:=0 ; ELSE OUT:=IN1 - (IN1/IN2)*IN2 ; END_IF

f IN1 shall be of type ANY_REAL, and IN2 of type ANY_NUM for this EXPT function. The output shall be of the
same type as IN1.

g The MOVE function has exactly one input (IN) of type ANY and one output (OUT) of type ANY.

6.5.2.6.4 Bit string functions 1821
The standard graphical representation, function names and descriptions of shift functions for a 1822
single bit-string variable shall be as defined in Table 32. These functions shall be overloaded 1823
on all bit-string types, and can be typed. 1824

The standard graphical representation, function names and symbols, and descriptions of bit-1825
wise Boolean functions shall be as defined in Table 33. These functions shall be extensible, 1826
except for NOT, and overloaded on all bit-string types, and can be typed. 1827

— 67 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 32 - Standard bit shift functions 1828

Graphical form Usage example a

(***) - Function Name

A := SHL(IN:=B, N:=5) ;

(ST language)

 No. Name Description

1 SHL OUT := IN left-shifted by N bits, zero-filled on right

2 SHR OUT := IN right-shifted by N bits, zero-filled on left

3 ROR OUT := IN right-rotated by N bits, circular

4 ROL OUT := IN left-rotated by N bits, circular

NOTE 1 The notation OUT refers to the function output.

NOTE 2 Examples: IN = 11001, N = 3
 SHL(11001, 3) = 01000
 SHR(11001, 3) = 00011
 ROR(11001, 3) = 00111
 ROL(11001, 3) = 01110

a It shall be an error if the value of the N input is less than zero.

 1829

— 68 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

6.5.2.6.5 Selection and comparison functions 1830

Selection and comparison functions shall be overloaded on all data types. The standard 1831
graphical representations, function names and descriptions of selection functions shall be as 1832
shown in Table 34. 1833

The standard graphical representation, function names and symbols, and descriptions of com-1834
parison functions shall be as defined in Table 35. All comparison functions (except NE) shall be 1835
extensible. 1836

Comparisons of bit string data shall be made bitwise from the leftmost to the rightmost bit, and 1837
shorter bit strings shall be considered to be filled on the left with zeros when compared to 1838
longer bit strings; that is, comparison of bit string variables shall have the same result as com-1839
parison of unsigned integer variables. 1840

Table 34 - Standard selection functionsd 1841

No. Graphical form Explanation/example

1

Binary selection c:
OUT := IN0 if G = 0
OUT := IN1 if G = 1
EXAMPLE:
 A := SEL (G:=0, IN0:=X,
 IN1:=5);

2

Extensible maximum function:
OUT := MAX (IN1, IN2,...,
INn);
EXAMPLE:
 A := MAX(B, C ,D);

Table 33 - Standard bitwise Boolean functions

Graphical form Usage examples (NOTE 5)

(***) - Name or symbol

A := AND(B,C,D) ;

or
A := B & C & D ;

No. a,b Name Symbol Description (NOTE 3)

1 AND & (NOTE 1) OUT := IN1 & IN2 &... & INn

2 OR >=1 (NOTE 2) OUT := IN1 OR IN2 OR... OR INn

3 XOR =2k+1 (NOTE 2) OUT := IN1 XOR IN2 XOR... XOR INn

4 NOT OUT := NOT IN1 (NOTE 4)

NOTE 1 This symbol is suitable for use as an operator in textual languages, as shown in Table 60 and Table 63.

NOTE 2 This symbol is not suitable for use as an operator in textual languages.

NOTE 3 The notations IN1, IN2,..., INn refer to the inputs in top-to-bottom order; OUT refers to the output.

NOTE 4 Graphic negation of signals of type BOOL can also be accomplished as shown in Table 22.

NOTE 5 Usage examples and descriptions are given in the ST language.

a When the named representation of a function is supported, this shall be indicated by the suffix “n” in the com-
pliance statement. For example, “5n” represents the notation “AND”.

b When the symbolic representation of a function is supported, this shall be indicated by the suffix “s” in the
compliance statement. For example, “5s” represents the notation “&”.

— 69 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

3

Extensible minimum function:
OUT := MIN (IN1, IN2,..., Nn)
EXAMPLE:
 A := MIN(B, C, D);

4

Limiter:
OUT := MIN(MAX(IN,MN),MX);
EXAMPLE:
 A := LIMIT(IN := B, MN:=0,
 MX := 5);

5e

Extensible multiplexer a, b, c:
Select one of N inputs depending on
input K
EXAMPLE:
 A := MUX(0, B, C, D);
 would have the same effect as
 A := B;

NOTE 1 The notations IN1, IN2,..., INn refer to the inputs in top-to-bottom order; OUT refers to the output.

NOTE 2 Usage examples and descriptions are given in the ST language.

a The unnamed inputs in the MUX function shall have the default names IN0, IN1,..., INn-1 in top-to-bottom
order, where n is the total number of these inputs. These names may, but need not, be shown in the graphical
representation.

b The MUX function can be typed in the form MUX_*_**, where * is the type of the K input and ** is the type of
the other inputs and the output.

c It is allowed, but not required, that the manufacturer support selection among variables of derived data types,
as defined in 6.3.3, in order to claim compliance with this feature.

d It is an error if the inputs and the outputs to one of these functions are not all of the same actual data type, with
the exception of the G input of the SEL function and the K input of the MUX function.

e It is an error if the actual value of the K input of the MUX function is not within the range {0 … n-1}.

— 70 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 1842

Table 35 - Standard comparison functions 1843

Graphical form Usage examples

A := GT(B,C,D);
 or
A := (B>C) & (C>D);

No. Name a Symbol b Description

1 GT > Decreasing sequence:
OUT := (IN1>IN2)& (IN2>IN3) &... & (INn-1 > INn)

2 GE >= Monotonic sequence:
OUT := (IN1>=IN2)& (IN2>=IN3)&... & (INn-1 >= INn)

3 EQ = Equality:
OUT := (IN1=IN2)& (IN2=IN3) &... & (INn-1 = INn)

4 LE <= Monotonic sequence:
OUT := (IN1<=IN2)& (IN2<=IN3)&... & (INn-1 <= INn)

5 LT < Increasing sequence:
OUT := (IN1<IN2)& (IN2<IN3) &... & (INn-1 < INn)

6 NE <> Inequality (non-extensible):
OUT := (IN1<>IN2)

NOTE 1 The notations IN1, IN2,..., INn refer to the inputs in top-to-bottom order; OUT refers to the output.

NOTE 2 All the symbols shown in this table are suitable for use as operators in textual languages, as shown in
Table 60 and Table 63.

NOTE 3 Usage examples and descriptions are given in the ST language.

NOTE 4 Standard comparison functions may be defined language dependant too e.g. ladder as shown in Table 69

a When the named representation of a function is supported, this shall be indicated by the suffix “n” in the compli-
ance statement. For example, “1n” represents the notation “GT”.

b When the symbolic representation of a function is supported, this shall be indicated by the suffix “s” in the com-
pliance statement. For example, “1s” represents the notation “>“.

6.5.2.6.6 Character string functions 1844
All the functions defined in 6.5.2.6.5 shall be applicable to character strings. For the purposes 1845
of comparison of two strings of unequal length, the shorter string shall be considered to be ex-1846
tended on the right to the length of the longer string by characters with the value zero. Com-1847
parison shall proceed from left to right, based on the numeric value of the character codes in 1848
the character set defined in 6.1.1. 1849

EXAMPLE 1850
 The character string 'Z' is greater than the character string 'AZ' ('Z' > 'A'), and 'AZ' 1851
 is greater than 'ABC' ('A' = 'A' and 'Z' > 'B'). 1852
The standard graphical representations, function names and descriptions of additional func-1853
tions of character strings shall be as shown in Table 36. For the purpose of these operations, 1854
character positions within the string shall be considered to be numbered 1, 2,..., L, beginning 1855
with the leftmost character position, where L is the length of the string. 1856

It shall be an error if: 1857

• the actual value of any input designated as ANY_INT in Table 36 is less than zero; 1858

• evaluation of the function results in an attempt to (1) access a non-existent character posi-1859
tion in a string, or (2) produce a string longer than the implementation-dependent maximum 1860
string length. 1861

— 71 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 36 - Standard character string functions 1862

No. Graphical form Explanation/example

1

String length function
EXAMPLE
 A := LEN('ASTRING');
 is equivalent to A := 7;

2

Leftmost L characters of IN
EXAMPLE
 A := LEFT(IN:='ASTR', L:=3);
 is equivalent to A := 'AST';

3

Rightmost L characters of IN
EXAMPLE
 A := RIGHT(IN:='ASTR', L:=3);
 is equivalent to A := 'STR';

4

L characters of IN,
beginning at the P-th
EXAMPLE
 A := MID(IN:='ASTR', L:=2, P:=2);
 is equivalent to A := 'ST';

5 Extensible concatenation
EXAMPLE
 A := CONCAT('AB','CD','E');
 is equivalent to A := 'ABCDE';

6

Insert IN2 into IN1 after the
P-th character position
EXAMPLE
 A:=INSERT(IN1:='ABC', IN2:='XY', P=2);
 is equivalent to A := 'ABXYC' ;

7

Delete L characters of IN, beginning
at the P-th character position
EXAMPLE
 A := DELETE(IN:='ABXYC', L:=2, P:=3);
 is equivalent to A := 'ABC';

8 Replace L characters of IN1 by IN2,
starting at the P-th character position
EXAMPLE
 A := REPLACE(IN1:='ABCDE', IN2:='X',
 L:=2, P:=3);
 is equivalent to A := 'ABXE';

9

Find the character position of the beginning of the first
occurrence of IN2 in IN1. If no occurrence of IN2 is
found, then OUT := 0.
EXAMPLE
 A := FIND(IN1:='ABCBC', IN2:='BC');
 is equivalent to A := 2;

NOTE The examples in this table are given in the Structured Text (ST) language.

6.5.2.6.7 Functions of time data types 1863
In addition to the comparison and selection functions, the combinations of input and output 1864
time data types shown in Table 37 shall be allowed with the associated functions. 1865

It shall be an error if the result of evaluating one of these functions exceeds the implementa-1866
tion-dependent range of values for the output data type. 1867

— 72 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 37 - Functions of time data types 1868

No. Name Symbol IN1 IN2 OUT

Numeric and concatenation functions

1ac,d ADD + TIME TIME TIME

1bc,d ADD_TIME + TIME TIME TIME

2a ADDb +b TIME_OF_DAY TIME TIME_OF_DAY

2b ADD_TOD_TIME +b TIME_OF_DAY TIME TIME_OF_DAY

3a ADD +b DATE_AND_TIME TIME DATE_AND_TIME

3b ADD_DT_TIME +b DATE_AND_TIME TIME DATE_AND_TIME

4ac,d SUB - TIME TIME TIME

4bc,d SUB_TIME - TIME TIME TIME

5a SUBb -b DATE DATE TIME

5b SUB_DATE_DATE -b DATE DATE TIME

6a SUBb -b TIME_OF_DAY TIME TIME_OF_DAY

6b SUB_TOD_TIME -b TIME_OF_DAY TIME TIME_OF_DAY

7a SUBb -b TIME_OF_DAY TIME_OF_DAY TIME

7b SUB_TOD_TOD -b TIME_OF_DAY TIME_OF_DAY TIME

8a SUBb -b DATE_AND_TIME TIME DATE_AND_TIME

8b SUB_DT_TIME -b DATE_AND_TIME TIME DATE_AND_TIME

9a SUBb -b DATE_AND_TIME DATE_AND_TIME TIME

9b SUB_DT_DT -b DATE_AND_TIME DATE_AND_TIME TIME

10a MULb *b TIME ANY_NUM TIME

10b MULTIME *b TIME ANY_NUM TIME

11a DIVb /b TIME ANY_NUM TIME

11b DIVTIME /b TIME ANY_NUM TIME

12 CONCAT_DATE_TOD DATE TIME_OF_DAY DATE_AND_TIME

Type conversion functions

13a DT_TO_TOD

14a DT_TO_DATE

NOTE 1 Non-blank entries in the Symbol column are suitable for use as operators in textual languages, as shown in
tables 52 and 55.

NOTE 2 The notations IN1, IN2,..., INn refer to the inputs in top-to-bottom order; OUT refers to the output.

NOTE 3 It is possible to type the functions MULTIME and DIVTIME, e.g., the operands of MULTIME_REAL would be
of type TIME and REAL, respectively.

NOTE 4 The effects of conversion between time data types and types STRING and WSTRING are defined in footnote
(e) Table 29.

NOTE 5 The effects of type conversions between time data types and other data types not defined in this table are
implementation-dependent.

— 73 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 1869
a The type conversion functions shall have the effect of “extracting” the appropriate data,

EXAMPLE
 The ST language statements

 X := DT#1986-04-28-08:40:00 ;
 Y := DT_TO_TOD(X) ;
 W := DT_TO_DATE(X);
 have the same result as the statements
 X := DT#1986-04-28-08:40:00 ;
 W := DATE#1986-04-28 ;
 Y := TIME_OF_DAY#08:40:00;

b This usage is deprecated and will not be included in future editions of this standard.
c When the named representation of a function is supported, this shall be indicated by the suffix “n” in the compli-

ance statement. For example, “1n” represents the notation “ADD”.
d When the symbolic representation of a function is supported, this shall be indicated by the suffix “s” in the compli-

ance statement. For example, “1s” represents the notation “+”.

6.5.2.6.8 Functions of enumerated data types 1870
The selection and comparison functions listed in Table 38 can be applied to inputs which are of 1871
an enumerated data type as defined in 6.3.2. 1872

Table 38 - Functions of enumerated data types 1873

No. Name Symbol Feature No. in tables 27 and 28

1 SEL 1
2 MUX 4

3a EQ = 7

4a NE <> 10

NOTE The provisions of NOTES 1 and 2 of

Table 35 apply to this table.

 a The provisions of footnotes a and b of

Table 35 apply to this feature.

6.5.3 Function blocks 1874

6.5.3.1 General 1875
For the purposes of programmable controller programming languages, a function block is a 1876
program organization unit (POU) which, when executed, yields no or exactly one data element, 1877
which is considered to be the function block result (like a function), and one or more values 1878
which are considered to be the function block outputs. 1879

[Editor’s Note: Tbd: Syntax for optional FB result. (is a new feature)] 1880

Multiple, named instances (copies) of a function block type can be created. Each instance shall 1881
have an associated identifier (the instance name), and a data structure containing its, if exist-1882
ing, function block result, its output and internal variables, and, depending on the implementa-1883
tion, values of or references to its input and in-out variables. All the values of the function 1884
block result, the output variables and the necessary internal variables of this data structure 1885
shall persist from one execution of the function block instance to the next; therefore, call of a 1886
function block instance with the same arguments (input variables) need not always yield the 1887
same output values. 1888

Only the input and output variables and the function block result shall be accessible outside of 1889
an instance of a function block, i.e., the function block's internal variables shall be hidden from 1890
the user of the function block. 1891

— 74 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Execution of the operations of a function block instance shall be called as defined in 7 for tex-1892
tual languages (IL and ST), according to the rules of network evaluation given in 8 for graphic 1893
languages (LD and FBD), or under the control of sequential function chart (SFC) elements. 1894

Any function block type which has already been declared can be used in the declaration of an-1895
other function block type or program type as shown in Figure 3. 1896

The scope of an instance of a function block shall be local to the program organization unit in 1897
which it is instantiated, unless it is declared to be global in a VAR_GLOBAL block as defined in 1898
 6.7.2. 1899

As illustrated in 6.5.3.4, the instance name of a function block instance can be used as the in-1900
put to a function or function block instance if declared as an input variable in a VAR_INPUT 1901
declaration, or as an input/output variable of a function block instance in a VAR_IN_OUT decla-1902
ration, as defined in 6.4.4. 1903

The maximum number of function block types and instantiations for a given resource are im-1904
plementation dependencies. 1905

Object oriented extensions to the function block concept are specified as optional features in 1906
 6.5.4 1907

6.5.3.2 Representation 1908
As illustrated in Figure 10, an instance of a function block can be created textually, by declar-1909
ing a data element using the declared function block type in a VAR...END_VAR construct, 1910
identically to the use of a structured data type, as defined in 6.4.4. 1911

As further illustrated in Figure 10, an instance of a function block can be created graphically, 1912
by using a graphic representation of the function block, with the function block type name in-1913
side the block, and the instance name above the block, following the rules for representation of 1914
functions given in 6.5.2.2. 1915

As shown in Figure 10, input and output variables of an instance of a function block can be rep-1916
resented as elements of structured data types as defined in 6.3.3. 1917

If either of the two graphical negation features defined in Table 22 is supported for function 1918
blocks, it shall also be supported for functions as defined in 6.5.2, and vice versa. 1919

VAR FF75: SR; END_VAR (* Declaration *)

 FF75(S1:=%IX1, R:=%IX2); (* call *)
 %QX3 := FF75.Q1; (* Assign Output *)

 VAR a,b,r,out : BOOL;
 MyTon : TON; END_VAR
 MyTon(EN := NOT (a <> b),
 IN := r,
 NOT Q => out);

— 75 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 Function block with a result output

 YourTon
 +----+ +-------+
 a---| NE |---0| TON |---result
 b---| | |EN ENO|--
 +----+ r--|IN Q|0-out
 |PT ET|--
 +-------+

Function block with a result output

 VAR
 a,b,r,out, result : BOOL;
 MyTon : TON;
 END_VAR
 result := MyTon(EN := NOT (a <> b),
 IN := r,
 NOT Q => out);

 a) Graphical (FBD language) b) Textual (ST language)

Figure 10 - Function block instantiation examples 1920

Assignment of a value to an output variable of a function block is not allowed except from 1921
within the function block. The assignment of a value to the input of a function block is permitted 1922
only as part of the call of the function block. Unassigned or unconnected inputs of a function 1923
block shall keep their initialized values or the values from the latest previous call, if any. Allow-1924
able usages of function block inputs and outputs are summarized in Table 39, using the func-1925
tion block FF75 of type SR shown in Figure 10. The examples are shown in the ST language. 1926

It shall be an error if no value is specified for: 1927

a) an in-out variable of a function block instance; 1928

b) a function block instance used as an input variable of another function block instance. 1929

Table 39 - Examples of function block I/O variable usage 1930

Usage Inside function block Outside function block

Input read IF IN1 THEN... Not allowed (NOTES 1 and 2)

Input assignment Not allowed (NOTE 1) FB_INST(IN1:=A, IN2:=B);

Output read OUT := OUT AND NOT IN2; C := FB_INST.OUT;

Output assignment OUT := 1; Not Allowed (NOTE 1)

In-out read IF INOUT THEN... IF FB1.INOUT THEN...

In-out assignment INOUT := OUT OR IN1; (NOTE 3) FB_INST(INOUT:=D);

NOTE 1 Those usages listed as “not allowed” in this table could lead to implementation-dependent, unpredictable
side effects.

NOTE 2 Reading and writing of input, output and internal variables of a function block may be performed by the
“communication function”, “operator interface function”, or the “programming, testing, and monitoring functions”
defined in IEC 61131-1.

NOTE 3 As illustrated in 6.5.3.4, modification within the function block of a variable declared in a VAR_IN_OUT
block is permitted.

6.5.3.3 Execution control using EN and ENO 1931

As shown in Table 25 for functions, for function blocks an additional Boolean EN (Enable) input 1932
or ENO (Enable Out) output, or both, can also be provided by the manufacturer or user accord-1933
ing to the declarations 1934

VAR_INPUT EN: BOOL := 1; END_VAR 1935
VAR_OUTPUT ENO: BOOL; END_VAR 1936

When these variables are used, the execution of the operations defined by the function block 1937
shall be controlled according to the following rules: 1938

1. If the value of EN is FALSE (0) when the function block instance is called, the assign-1939
ments of actual values to the function block inputs may or may not be made in an imple-1940

— 76 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

mentation-dependent fashion, the operations defined by the function block body shall not 1941
be executed and the value of ENO shall be reset to FALSE (0) by the programmable con-1942
troller system. 1943

2. Otherwise, the value of ENO shall be set to TRUE(1) by the programmable controller sys-1944
tem, the assignments of actual values to the function block inputs shall be made and the 1945
operations defined by the function block body shall be executed. These operations can in-1946
clude the assignment of a Boolean value to ENO. 1947

If the ENO output is evaluated to FALSE(0), the values of the function block outputs 1948
(VAR_OUTPUT) keep their states from the previous call. 1949
NOTE It is a consequence of these rules that the ENO output of a function block must be explicitly examined by 1950
the calling entity if necessary to account for possible error conditions`. 1951
EXAMPLE 1952

Figure 11 illustrates the use of EN and ENO in association with the standard TP,TON and TOF blocks (rep-1953
resented by T**) defined in 6.5.3.5.5, and the CTU and CTD blocks (represented by CT*) defined in 1954
 6.5.3.5.4. In accordance with the above rules, a FALSE value of the EN input may be used to “freeze” the 1955
operation of the associated function block; that is, the output values do not change irrespective of changes 1956
in any of the other input values. When the EN input value becomes TRUE, normal operation of the function 1957
block may resume. The value of the ENO output is FALSE after each evaluation of the function block for 1958
which the EN input is FALSE. When EN is TRUE, a TRUE value of ENO reflects a normal evaluation of the 1959
block, and a FALSE value of ENO may be used to indicate an implementation-dependent error condition. 1960

 1961

Figure 11 - Examples of usage of EN and ENO in function blocks 1962

6.5.3.4 Declaration 1963

As illustrated in Figure 11, a function block shall be declared textually or graphically in the 1964
same manner as defined for functions in 6.5.2.4, with the differences described below and 1965
summarized in Table 40: 1966

1) The keyword FUNCTION_BLOCK, followed by an identifier specifying the name of the func-1967
tion being declared, 1968

2) If a function block result is available a colon ‘:‘, and the data type of the value to be re-1969
turned by the function block or if no function block result is available nothing or the key-1970
word ‘VOID’; 1971

3) A VAR_INPUT...END_VAR construct specifying the names and types of the function's in-1972
put variables; In textual declarations, the R_EDGE and F_EDGE qualifiers can be used to 1973
indicate an edge-detection function on Boolean inputs. This shall cause the implicit decla-1974
ration of a function block of type R_TRIG or F_TRIG, respectively, as defined in 6.5.3.5.3, 1975
to perform the required edge detection. For an example of this construction, see features 1976
8a and 8b of Table 40 and the accompanying NOTE. 1977

4) The construction illustrated in features 9a and 9b of Table 40 shall be used in graphical 1978
declarations for rising and falling edge detection. When the character set defined in 6.1.1 1979
is used, the “greater than” (>) or “less than” (<) character shall be in line with the edge of 1980
the function block. When graphic or semigraphic representations are employed, the nota-1981
tion of IEC 60617-12 for dynamic inputs shall be used. 1982

5) VAR_IN_OUT...END_VAR and VAR_OUTPUT...END_VAR constructs if required, specify-1983
ing the names and types of the function's in-out and output variables; 1984

6) EN/ENO inputs and outputs shall be declared and used as described in 6.5.2.3. 1985

7) A VAR...END_VAR construct, if required, specifying the names and types of the function 1986
block's internal variables; 1987

— 77 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

8) A VAR_TEMP...END_VAR construct, if required, specifying the names and types of the 1988
function block's internal variables; 1989

9) A VAR_EXTERNAL...END_VAR construct, if required, specifying the names and types of 1990
the function block's temporary variables; 1991

10) The RETAIN or NON_RETAIN qualifier defined in 6.4.4 can be used for internal and output 1992
variables of a function block, as shown in features 1, 2, and 3 in Table 40. 1993

11) The asterisk notation (feature 10 in Table 15) can be used in the declaration of internal 1994
variables of a function block. 1995

12) A function block body, written in one of the languages defined in this standard, or another 1996
programming language, which specifies the operations to be performed upon the vari-1997
able(s) in order to assign values dependent on the function's semantics to its in-out, output 1998
or external variables and in the case that a function block result exists to a variable with 1999
the same name as the function block, which represents the function block result to be re-2000
turned by the function block (function block result); 2001

13) The values of variables which are passed to the function block via a VAR_EXTERNAL con-2002
struct can be modified from within the function block, as shown in feature 10 of Table 40. 2003

14) The output values of a function block instance whose name is passed into the function 2004
block via a VAR_INPUT, VAR_IN_OUT, or VAR_EXTERNAL construct can be accessed, but 2005
not modified, from within the function block, as shown in features 5, 6, and 7 Table 40. 2006

15) A function block whose instance name is passed into the function block via a VAR_IN_ 2007
OUT or VAR_EXTERNAL construction can be called from inside the function block, as shown 2008
in features 6 and 7 of Table 40. 2009

16) If the generic data types given in Figure 4 are used in the declaration of standard function 2010
block inputs and outputs, then the rules for inferring the actual types of the outputs of such 2011
function block types shall be part of the function block type definition. In textual calls of 2012
such function blocks assignments of the outputs to variables shall be made directly in the 2013
call statement (using the operator ‘=>‘). 2014

As illustrated in Figure 14, only variables or function block instance names can be passed into 2015
a function block via the VAR_IN_OUT construct, i.e., function or function block outputs cannot 2016
be passed via this construction. This is to prevent the inadvertent modifications of such out-2017
puts. However, “cascading” of VAR_IN_OUT constructions is permitted, as illustrated in Figure 2018
14 c). 2019

FUNCTION_BLOCK DEBOUNCE

 (*** External Interface ***)
 VAR_INPUT
 IN : BOOL ; (* Default = 0 *)
 DB_TIME : TIME := t#10ms ; (* Default = t#10ms *)
 END_VAR
 VAR_OUTPUT
 OUT : BOOL ; (* Default = 0 *)
 ET_OFF : TIME ; (* Default = t#0s *)
 END_VAR
 VAR DB_ON : TON ; (** Internal Variables **)
 DB_OFF : TON ; (** and FB Instances **)
 DB_FF : SR ;
 END_VAR

 (** Function Block Body **)
 DB_ON(IN := IN, PT := DB_TIME) ;
 DB_OFF(IN := NOT IN, PT := DB_TIME) ;
 DB_FF(S1 := DB_ON.Q, R := DB_OFF.Q) ;
 OUT := DB_FF.Q1 ;
 ET_OFF := DB_OFF.ET ;
END_FUNCTION_BLOCK

a) Textual declaration in ST language

— 78 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 2020

b) Graphical declaration in FBD language

Figure 12 - Examples of function block declarations 2021

The following table shows the function block declarations and the usage of the features. 2022

Table 40 - Function block declaration and usage features 2023

No. Description Example

1a RETAIN qualifier on internal variables VAR RETAIN X : REAL; END_VAR

1b NON_RETAIN qualifier on internal variables VAR NON_RETAIN X : REAL; END_VAR

2a RETAIN qualifier on output variables VAR_OUTPUT RETAIN X : REAL; END_VAR

2b RETAIN qualifier on input variables VAR_INPUT RETAIN X : REAL; END_VAR

2c NON_RETAIN qualifier on output variables VAR_OUTPUT NON_RETAIN X : REAL; END_VAR

2d NON_RETAIN qualifier on input variables VAR_INPUT NON_RETAIN X : REAL; END_VAR

3a RETAIN qualifier on internal function blocks VAR RETAIN TMR1: TON; END_VAR

3b NON_RETAIN qualifier on internal function blocks VAR NON_RETAIN TMR1: TON; END_VAR

4a VAR_IN_OUT declaration (textual) VAR_IN_OUT A: INT; END_VAR

4b VAR_IN_OUT declaration and usage(graphical) See Figure 14

4c VAR_IN_OUT declaration with assignment to dif-
ferent variables (graphical)

See Figure 14 d

5a Function block instance name as input (textual) VAR_INPUT I_TMR: TON; END_VAR
 EXPIRED := I_TMR.Q; (* See NOTE 1 *)

5b Function block instance name as input (graphical) See Figure 14 a

6a Function block instance name as VAR_IN_OUT
(textual)

VAR_IN_OUT IO_TMR: TOF; END_VAR
 IO_TMR(IN:=A_VAR, PT:=T#10S);
 EXPIRED := IO_TMR.Q; (*See NOTE 1 *)

6b Function block instance name as VAR_IN_OUT
(graphical)

See Figure 14 b

7a Function block instance name as external variable
(textual)

VAR_EXTERNAL EX_TMR : TOF ;END_VAR
 EX_TMR(IN:=A_VAR, PT:=T#10S);
 EXPIRED := EX_TMR.Q; (*See NOTE 1 *)

7b Function block instance name as external variable
(graphical)

See Figure 14 c

— 79 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Description Example

8a Textual declaration of:
- rising edge inputs

8b - falling edge inputs

FUNCTION_BLOCK AND_EDGE (*See
NOTE 2 *)
VAR_INPUT X : BOOL R_EDGE;
 Y : BOOL F_EDGE;
END_VAR
VAR_OUTPUT Z : BOOL ; END_VAR
 Z := X AND Y ; (* ST lan-
guage example *)
END_FUNCTION_BLOCK

9a

Graphical declaration of:
- rising edge inputs

9b - falling edge inputs

10a VAR_EXTERNAL declarations within function block type declarations

10b VAR_EXTERNAL CONSTANT declarations within function block type declarations

11 VAR_TEMP declarations (Table 18) within function block type declarations

12a Textual declaration of:
- function block result

FUNCTION_BLOCK EDGES : BOOL

VAR_INPUT X : BOOL; END_VAR
VAR
 X_TRG : R_TRIG;
 Y_TRIG : F_TRIG;
END_VAR

 EDGES := X_TRIG.Q OR Y_TRIG.Q;

END_FUNCTION_BLOCK

12b Graphical declaration of:
- function block result

FUNCTION_BLOCK

 +----------+
 | EDGES |
 BOOL --|X |---BOOL
 +----------+

VAR
 X_TRG : R_TRIG;
 Y_TRIG : F_TRIG;
END_VAR

 +----+
 | OR |
 X_TRIG.Q---| |---EDGES
 Y_TRIG.Q---| |
 +----+

END_FUNCTION_BLOCK

Textual usage of function block result

VAR

 Bool1 : BOOL;

 Bool2 : BOOL;

 EDGES1 : EDGES;

 EDGES2 : EDGES;

END_VAR

12c

Direct use in an expression IF (EDGES1(Bool1) OR EDGES2(Bool2))
THEN …

END_IF;

— 80 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Description Example

 Explicit use EDGES1(Bool1);

EDGES2(Booll);

IF (EDGES1.EDGES OR EDGES2.EDGES)
 THEN …

END_IF;

NOTE 1 It is assumed in these examples that the variables EXPIRED and A_VAR have been declared of type
BOOL.

NOTE 2 The declaration of function block AND_EDGE in the above examples is equivalent to:

 FUNCTION_BLOCK AND_EDGE
 VAR_INPUT
 X : BOOL;
 Y : BOOL;
 END_VAR
 VAR
 X_TRG : R_TRIG;
 Y_TRIG : F_TRIG;
 END_VAR
 VAR_OUTPUT
 Z : BOOL;
 END_VAR

 X_TRIG(CLK := X);
 Y_TRIG(CLK := Y);
 Z := X_TRIG.Q AND Y_TRIG.Q;
END_FUNCTION_BLOCK

See Table 42 for the definition of the edge detection function blocks R_TRIG and F_TRIG.

 2024
The following figurs shows the graphical use of function block names. 2025

See Table 40, feature 5b (NOTE 1)
a) - Function block name as an input variable

— 81 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

See Table 40, feature 6b
b) Function block name as an in-out variable

— 82 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

See Table 40, feature 7b (NOTE 2)
c) Function block name as an external variable

NOTE 1 I_TMR is here not represented graphically since this would imply call of I_TMR within INSIDE_A, which
is forbidden by rules 4) and 5) of 6.5.3.4. See also feature 5 a) of Table 40.

NOTE 2 The PROGRAM declaration mechanism is defined in 2.5.3.

Figure 13 - Graphical use of function block names 2026

The following figure shows the declaration and usage of in-out variables in function blocks. 2027

 2028

— 83 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

FUNCTION_BLOCK ACCUM
 VAR_IN_OUT A : INT ; END_VAR
 VAR_INPUT X : INT ; END_VAR
 A := A+X ;
END_FUNCTION_BLOCK

a) Graphical and textual declarations

A declaration such as
VAR
 ACC : INT ;
 X1 : INT ;
 X2 : INT ;
END_VAR
is assumed: the effect of execution is
ACC := ACC+X1*X2 ;

b) Allowed usage

Declarations as in b) are assumed for ACC,
X1, X2, X3, and X4;

the effect of execution is
ACC := ACC+X1*X2+X3*X4;

c) Allowed usage

A declaration such as
VAR
 X1 : INT ;
 X2 : INT ;
 X3 : INT ;
 X4 : INT ;
END_VAR
is assumed: the effect of execution is
X3 := X3+X1*X2 ;
X4 := X3 ;

d) Allowed usage

NOT ALLOWED!!!
Connection to in-out variable A is not a
variable or function block name (see pre-
ceding text)

e) Disallowed usage

Figure 14 - Declaration and usage of in-out variables in function blocks 2029

6.5.3.5 Standard function blocks 2030

6.5.3.5.1 General 2031

Definitions of function blocks common to all programmable controller programming languages 2032
are given below. 2033

Where graphical declarations of standard function blocks are shown in this subclause, equiva-2034
lent textual declarations, as specified in 6.5.3.4, can also be written, as for example in Table 2035
42. 2036

— 84 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Standard function blocks may be overloaded and may have extensible inputs and outputs. The 2037
definitions of such function block types shall describe any constraints on the number and data 2038
types of such inputs and outputs. The use of such capabilities in non-standard function blocks 2039
is beyond the scope of this Standard. 2040

6.5.3.5.2 Bistable elements 2041
The graphical form and function block body of standard bistable elements are shown in Table 2042
41. The notation for these elements is chosen to be as consistent as possible with symbols 12-2043
09-01 and 12-09-02 of IEC 60617-12. 2044

Table 41 - Standard bistable function blocks a 2045

No. Graphical form Function block body

1a Bistable function block (set dominant)

1b Bistable function block (set dominant) with long input names

2a Bistable function block (reset dominant)

2b Bistable function block (reset dominant) with long input names

 +---+
RESET1 --------------0| & |---Q1
 +-----+ | |
SET------| >=1 |------| |
Q1-------| | +---+
 +-----+

NOTE The function block body is specified in the Function Block Diagram (FBD) language defined in 8.3.

a The initial state of the output variable Q1 shall be the normal default value of zero for Boolean variables.

6.5.3.5.3 Edge detection 2046
The graphic representation of standard rising- and falling-edge detecting function blocks shall 2047
be as shown in Table 42. The behaviors of these blocks shall be equivalent to the definitions 2048
given in this table. This behavior corresponds to the following rules: 2049

 1. The Q output of an R_TRIG function block shall stand at the BOOL#1 value from one execu-2050
tion of the function block to the next, following the 0 to 1 transition of the CLK input, and 2051
shall return to 0 at the next execution. 2052

 2. The Q output of an F_TRIG function block shall stand at the BOOL#1 value from one execu-2053
tion of the function block to the next, following the 1 to 0 transition of the CLK input, and 2054
shall return to 0 at the next execution. 2055

— 85 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 42 - Standard edge detection function blocks 2056

No. Graphical form Definition
(ST language)

Rising edge detector 1

FUNCTION_BLOCK R_TRIG
 VAR_INPUT
 CLK : BOOL;
 END_VAR
 VAR_OUTPUT
 Q : BOOL;
 END_VAR
 VAR
 M : BOOL;
 END_VAR
 Q := CLK AND NOT M;
 M := CLK;
END_FUNCTION_BLOCK

Falling edge detector 2

FUNCTION_BLOCK F_TRIG
 VAR_INPUT
 CLK : BOOL;
 END_VAR
 VAR_OUTPUT
 Q : BOOL;
 END_VAR
 VAR
 M : BOOL;
 END_VAR
 Q := NOT CLK AND NOT M;
 M := NOT CLK;
END_FUNCTION_BLOCK

NOTE When the CLK input of an instance of the R_TRIG type is connected to a value of BOOL#1, its Q output
will stand at BOOL#1 after its first execution following a “cold restart” as described in 6.4.2. The Q output will
stand at BOOL#0 following all subsequent executions. The same applies to an F_TRIG instance whose CLK input
is disconnected or is connected to a value of FALSE.

6.5.3.5.4 Counters 2057

The graphic representations of standard counter function blocks, with the types of the associ-2058
ated inputs and outputs, shall be as shown in Table 43. The operation of these function blocks 2059
shall be as specified in the corresponding function block bodies. 2060

Table 43 - Standard counter function blocks 2061

No. Graphical form Function block body
(ST language)

Up-counters

1a

IF R
THEN CV := 0;
ELSIF CU AND (CV < PVmax)
 THEN
 CV := CV+1;
END_IF;
 Q := (CV >= PV);

1b

Same as 1a

1c

Same as 1a

— 86 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Graphical form Function block body
(ST language)

1d

Same as 1a

1e

Same as 1a

Down-counters

2a

IF LD
THEN CV := PV;
ELSIF CD AND (CV > PVmin)
 THEN CV := CV-1;
END_IF ;
 Q := (CV <= 0);

2b

Same as 2a

2c

Same as 2a

2d

Same as 2a

2e

Same as 2a

Up-down counters

3a

IF R
THEN CV := 0;
ELSIF LD
 THEN CV := PV;
 ELSE
 IF NOT (CU AND CD)
 THEN
 IF CU AND (CV < PVmax)
 THEN CV := CV+1;
 ELSIF CD AND (CV > PVmin)
 THEN CV := CV-1;
 END_IF;
 END_IF;
 END_IF;
 QU := (CV >= PV);
 QD := (CV <= 0);

— 87 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Graphical form Function block body
(ST language)

3b

Same as 3a

3c

Same as 3a

3d

Same as 3a

3e

Same as 3a

NOTE The numerical values of the limit variables PVmin and PVmax are implementation-dependent.

6.5.3.5.5 Timers 2062

The graphic form for standard timer function blocks shall be as shown in Table 44. The opera-2063
tion of these function blocks shall be as defined in the timing diagrams given in Figure 15. 2064

Table 44 - Standard timer function blocks 2065

No. Description Graphical form

1 *** is: TP (Pulse)

2a TON (On-delay)

2b a T---0 (On-delay)

3a TOF (Off-delay)

3b a 0---T (Off-delay)

NOTE The effect of a change in the value of the PT input during the timing operation, e.g., the setting of PT to
t#0s to reset the operation of a TP instance, is an implementation-dependent parameter.

a In textual languages, features 2b and 3b shall not be used.

 2066
The following figure shows the timing diagrams of the standard timer function blocks. 2067
 2068

— 88 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

a) Pulse (TP) timing

b) On-delay (TON) timing

c) Off-delay (TOF) timing

Figure 15 - Standard timer function blocks - timing diagrams (Example) 2069

6.5.3.5.6 Communication function blocks 2070
Standard communication function blocks for programmable controllers are defined in IEC 2071
61131-5. These function blocks provide programmable communications functionality such as 2072
device verification, polled data acquisition, programmed data acquisition, parametric control, 2073
interlocked control, programmed alarm reporting, and connection management and protection. 2074

││ 2075

— 89 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

6.5.4 Object oriented extensions to the function block concept 2076

6.5.4.1 General 2077

The function block concept of IEC 61131-3 2nd edition is extended to support the object ori-2078
ented paradigm using the following concepts: 2079

• Method 2080

• Interface 2081

• Inheritance 2082

Which subset of the following features a particular implementation supports shall be stated by 2083
the manufacturer according the feature Table 45. 2084

Table 45 - Features of the object oriented function blocks concept 2085

No. Keyword DESCRIPTION Clause

1a METHOD
… END_METHOD

Method definition
 and call (call);
 i.e. function_block_instance_name.method_name

 6.5.4.2

1b PUBLIC,
PRIVATE

Method access specifiers; i.e. PUBLIC METHOD method_name 6.5.4.2.4

2 INTERNAL Method access specifier - Namespace 6.5.4.2.4

3 - Function block body - additional to methods 6.5.4.1

4a
4b

INTERFACE,

IMPLEMENTS

Interface and method prototype used
a) with function block declaration – function block implements an interface
b) as variable of type interface

 6.5.4.3
 6.5.4.3.3

5 EXTENDS,

THIS,

SUPER,

OVERRIDE

Function block inheritance - from another function block
 access to own FB
 access to base FB
 base methods to override - including “Name binding” in feature no. 8

 6.5.4.4.2

6 EXTENDS Interface inheritance – from another interface 6.5.4.4.3

7 PROTECTED Method access specifier - from inside of own and derived function block(s)
only

 6.5.4.2.4

8a
8b

 Name binding – see OVERRIDE
a) Static override of methods
b) Dynamic override of methods

 6.5.4.4.4

9a ABSTRACT a) Abstract function block
b) Abstract method

 6.5.4.4.7

10 NAMESPACE

 INTERNAL ACCESS

 … ACCESS_END

 PUBLIC ACCESS

 … ACCESS_END

END_NAMESPACE

Applies not only to OOP language elements.
Access areas.

 6.8

[Editor’s Note: All new language elements to be syntactically defined also in Annex B- 2086
Formal specification] 2087

— 90 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

6.5.4.2 Methods in function blocks 2088

6.5.4.2.1 General 2089
For the purpose of the programmable controller languages the concept of methods well known 2090
in the object-oriented programming is adopted as optional language elements defined within 2091
the function block type definition. 2092

Methods may be applied to define the operations to be performed on the function block in-2093
stance data. The construct corresponding to the syntactic element function_block_body in 2094
annex B.2.5.2 shall be used. 2095

A function block with its methods and the call of a method is shown in the example in 6.5.4.2 2096

When executed, a method may yield one or no data element, which is considered to be the me-2097
thod result, and additional output elements (VAR_OUTPUT and VAR_IN_OUT). As for any data 2098
element, the method result can be multi-valued, for example, an array or structure. Like the 2099
function result the call of a method yielding a result could be used as an operand in an ex-2100
pression. 2101

Methods may be defined instead of the function block body or additionally to the function block 2102
body at is defined in 6.5.3.4. In the latter case the function block body shall be executed like a 2103
method. 2104

NOTE The function block body in addition to the methods is permitted for compatibility reasons. 2105

6.5.4.2.2 Method declaration 2106

A method may be defined in any of the programming languages specified in this standard by 2107
using the keywords METHOD method_ name … END_METHOD. See also in the feature Table 2108
45. 2109

The name of a method shall be unique within the definition of the function block, this includes 2110
variable and method names. Two function blocks types may define methods with the same 2111
name. 2112

The methods are declared within the scope of a function block type (after the function block 2113
body, if there is any). They have access to variables of the function block type (VAR, 2114
VAR_INPUT, VAR_OUTPUT, VAR_EXTERNAL), except variables within a VAR_TEMP or VAR_-2115
IN_OUT declaration. 2116

Variables declared within the definition of a method shall not keep their state from one call to 2117
the next call, but shall be either assigned by the call (VAR_INPUT, VAR_IN_OUT) or initialized 2118
(VAR_TEMP, VAR_OUTPUT). 2119

The methods may contribute to the internal state of the function block instance by declaring 2120
variables their own VAR … END_VAR section which is located in the function block instance 2121
data. Variables within this section keep their state from one call of the method of an FB in-2122
stance to the next call of the method of the same instance. 2123

The following example is for illustration only. The representation is not normative. 2124

EXAMPLE see Figure 16 2125
Illustration of the concept a function block with methods: 2126
 2127
a) Function block type definition (drive) 2128

- FB Variables x, y, z 2129
- optional FB body and FB Input/Output variables 2130
- set of methods (start, stop) with each its result and variables and a algorithm 2131

b) FB instantiation (my_drive) 2132
c) Access from methods to FB variables 2133

- own variable (x), (y) and 2134
- common variables (z) 2135

d) Method call: here the call from outside a Function block. 2136
 2137

— 91 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 2138

Figure 16 – Function block with methods declaration and method call (Example) 2139

A method declaration is similar to a function declaration with the following differences: 2140

 A method declaration is delimited by the keyword combination METHOD and END_ METHOD. 2141

 A method declaration allows VAR_TEMP ... END_VAR declarations. 2142

 A method declaration is placed after the body of the function block, if any or after the func-2143
tion block declarations. 2144
 2145
NOTE: The function block as defined in 6.5.3 has a body with operations, but this is optional if the function 2146
block has methods. If a function block has a body then it can be called. 2147

 A method declaration may contain the additional keyword OVERRIDE or ABSTRACT as 2148
defined in 6.5.4.4.7 2149

 A method declaration shall contain one of the following access specifiers: 2150
PUBLIC, PRIVATE, INTERNAL, and PROTECTED as defined in 6.5.4.2.4. 2151

EXAMPLE see Figure 17 2152
The example contains a Function Block COUNTER with two methods for counting up. Method UP1 shows how to call 2153
a method of the same function block. 2154
 2155

FUNCTION_BLOCK drive

FB Variables

METHOD start
Variables
Algorithm

(FB Body)

METHOD stop
Variables
Algorithm

drive.stop
Variables
Algorithm

my_drive

a) Function block type definition and instantiation

d) Method call (from outside) my_drive

x y z

b) FB instance

c) Method access

Input variables
Result

Output Variables

— 92 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

FUNCTION_BLOCK COUNTER
 VAR
 CV : UINT; // current value of counter
 END_VAR

 PUBLIC METHOD UP : UINT // method for count up by inc

 VAR_INPUT

 INC : UINT; // the increment

 END_VAR

 VAR_OUTPUT

 QU : BOOL; // upper limit detection

 END_VAR

 IF CV <= Max - INC // max e.g. 10000
 THEN CV := CV + INC; // count up of current value

 ELSE QU := TRUE; / upper limit reached

 END_IF

 UP := CV; // result of method
 END_METHOD

 PUBLIC METHOD UP1 : UINT // count up by 1
 VAR_OUTPUT
 QU: BOOL; // upper limit reached
 END_VAR
 UP1 := UP (INC := 1, QU => QU); // internal method call
 END_METHOD
 // no body!

END_FUNCTION_BLOCK

Figure 17 – Function block with methods and method call (Example) 2156

6.5.4.2.3 Method call 2157
The methods can be called as shown in Figure 16 and Figure 17 in textual languages and in 2158
graphical languages. 2159

In all languages representations there are two different cases of call (invocation) of a method 2160
as shown in Figure 18: 2161

a) Internal call: an call of method of the same function block instance. 2162

b) External call: an call of a method of an instance of another function block. 2163

1. In the textual representation 2164

 the internal call is similar to the function call: … method_name(arguments) 2165
It is also possible to use the keyword THIS as defined in 6.5.4.4.5 2166

 the external call: … function_block_instance_name.method_name(arguments). 2167

2. In the graphical representation 2168

 the internal call shows only the method name inside the graphical block. 2169
It is also possible to use the keyword THIS as defined in 6.5.4.4.5 above the block.2170
 2171

 the outside call shows the method_name preceded by the function_block_type_name 2172
and “.” inside the graphical block. The instance name shall be located above the block. 2173

— 93 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

EXAMPLE see Figure 18 2174
Method usage in Structured Text and Function Block Diagram: 2175

VAR

 CT : COUNTER; //see Function Block in Example Figure 17

 LIMITATION : BOOL;

 VALUE : UINT;

END_VAR

1. In Structured Text (ST) - see 7.3

 a) Internal call of a method:
 VALUE := UP (INC := 1, QU => LIMITATION);

 b) External call of a method:
 VALUE := CT.UP(INC := 5, QU => LIMITATION);

2. In Function Block Diagram (FBD) - see 8.3.

 a) Internal call of a method:

 +--------------+

 │ UP │---VALUE // Method UP returns the result as “UP”

 1---│INC │
 │ QU│---LIMITATION
 +--------------+

 b) External call of a method:

 UP

 +--------------+

 │ COUNTER.UP │
 1---│INC UP│---VALUE // Method UP returns the result as “CT.UP”

 │ QU│---LIMITATION
 +--------------+

Figure 18 –Internal and external method call (Example) 2176

6.5.4.2.4 Access specifiers of method (Public, Private, Internal, Protected) 2177

The accessibility of a method is defined by using one of the following access specifiers before 2178
the keyword METHOD; e.g. PUBLIC METHOD Start. 2179

• PUBLIC: Indication for methods that are accessible at any place where the function block 2180
type can be used. 2181

• PRIVATE: Indication for methods that are only accessible from inside the function block 2182
type itself. 2183

Note By specifying PRIVATE access to the function block body an call of the function block type itself is not 2184
possible from outside. 2185

If namespace is implemented as defined in 6.8 a further access specifier is applicable 2186

• INTERNAL: Indication for methods that are only accessible from within the namespace as 2187
specified in 6.8, in which the function block type is declared. 2188

If inheritance is implemented a further access specifier is applicable 2189

• PROTECTED: Indication for methods that are only accessible from inside a function block 2190
type and from inside all derived function block types. 2191

All improper uses shall be treated as an error. 2192

— 94 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

The accessibility of the (optional) body of a function block type shall also be defined with these 2193
access specifiers. Therefore the keyword shall be inserted before the keyword FUNCTION_-2194
BLOCK. For compatibility reasons, when no specifier is present, the access is PUBLIC. 2195

EXAMPLE see Figure 19 2196
Illustration of the accessibility (call) of methods defined in FB C: 2197
 2198
a) Access specifiers: PUBLIC, PRIVAT, INTERNAL, PROTECTED 2199

- PUBLIC M1 accessible by call M1 from inside FB B (also FB C) 2200
- PRIVAT M2 accessible by call M2 from inside FB C only 2201
- INTERNAL M3 accessible by call M3 from inside NAMESPACE A (also FB B , FB C) 2202

 - PROTECTED M4 accessible by call M4 from inside FB C_derived (also FB C) 2203
 2204

b) Method calls inside/outside: 2205
 - M2 is called from inside FB C. - e.g. with keyword THIS. 2206
 - M1, M3 and M4 are FB C called from outside FB C – e.g. with keyword SUPER for M4. 2207

 2208

Figure 19 – Method accessibility (Example) 2209

6.5.4.3 Interface 2210

6.5.4.3.1 General 2211

The keyword INTERFACE is used to declare a collection of method prototypes as defined in 2212
 6.5.4.3.2. 2213

An INTERFACE is a “contract” between a function block and its caller(s) with following pur-2214
poses: 2215

 provides for separation of the interface specification from its implementation(s). 2216

 allows for multiple implementations behind the common interface specification. 2217

 allows abstraction across multiple function blocks. 2218

The interface specification may be used in two ways as defined in 6.5.4.3.3 : 2219

a) in a function block declaration. 2220
This specifies what methods the function block shall implement; e.g. reuse of the interface 2221
specification. 2222

b) as a type of a variable. 2223
Variables whose type is interface are references to instances of function blocks and shall 2224
be assigned before usage to a valid function block instance. Otherwise it shall be an error. 2225

NAMESPACE A

FUNCTION_BLOCK B

FUNCTION_BLOCK C

PRIVAT METHOD M2

PUBLIC METHOD M1

INTERNAL METHOD M3

PROTECTED METHOD M4

FUNCTION_BLOCK C_derived

Call M1
Call M2

Call M3

a) Method call

My_FB

My_FB_deriv

METHOD Mx Call M4

— 95 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Note To avoid a runtime error the programming tool could provides a default “dummy” method. Another way is 2226
to check in advance if it is assigned. 2227

The interface can not be instantiated. 2228

6.5.4.3.2 Method prototype 2229
A method prototype is a restricted method declaration for the use with interface. It contains 2230
only the method name, VAR_INPUT, VAR_OUTPUT and VAR_IN_OUT variables and the method 2231
result. A method prototype does not contain any operations (code). 2232

The access to method prototypes is implicitly always PUBLIC, therefore no access specifier is 2233
used on method prototypes. 2234

EXAMPLE see Figure 20 2235
Illustration of INTERFACE general_drive with 2236
a) method prototypes (no algorithm) 2237
b) FB drive_A and FB B drive_B IMPLEMENTS the INTERFACE. 2238

These FBs have methods with different algorithms. 2239
 2240

 2241
Figure 20 – Interface with derived Function blocks (Example) 2242

6.5.4.3.3 Usage of interface (IMPLEMENTS) 2243

As defined 6.5.4.3.1 an INTERFACE may be used in two ways: 2244

a) In a function block declaration: 2245

 In this case the function block implements one or more INTERFACE(s) by using the keyword 2246
IMPLEMENTS as shown as examples in Figure 20, Figure 21and Figure 24. 2247

The function block shall implement all methods specified by the method prototype(s) as de-2248
fined in 6.5.4.3.2 that are contained in the INTERFACE specification. That means the func-2249
tion block contains all methods including their operations as defined in 6.5.4.2.1. 2250

Note The implementation of a method prototype may have additional local variables (VAR). 2251
 The following situations shall be treated as an error according to the provisions of 5.1 d): 2252

INTERFACE general_drive

FB drive_A
IMPLEMENTS

general_drive

METHOD start
Variables

Algorithm X

METHOD stop
Variables

Algorithm Y

FB drive_B
IMPLEMENTS

general_drive

METHOD start
Variables

Algorithm V

METHOD stop
Variables

Algorithm W

b) IMPLEMENTS

METHOD start
Variables

(no algorithm) a) METHOD prototypes
METHOD start

Variables
(no algorithm)

METHOD stop
Variables

(no algorithm)

Variables

Different
algorithms

— 96 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

1. If a function block type does not implement all methods defined in the interface. 2253

2. If a function block type implements a method with the same name as defined in the in-2254
terface but with another set (or order) of VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT-2255
variables or with another method result. 2256

3. If a function block type implements a method with the same name as defined in the in-2257
terface but not with the access specifier PUBLIC. 2258

EXAMPLE 1 A function block implements an interface. 2259

Declaration

INTERFACE ROOM

 METHOD DAYTIME : VOID; // called during daytime
 END_METHOD

 METHOD NIGHTTIME : VOID; // called during nighttime
 END_METHOD
END_INTERFACE

FUNCTION_BLOCK LIGHTROOM IMPLEMENTS ROOM

VAR
 LIGHT : BOOL;
END_VAR

PUBLIC METHOD DAYTIME : VOID
 LIGHT := FALSE;
END_METHOD

PUBLIC METHOD NIGHTTIME : VOID
 LIGHT := TRUE;
END_METHOD

END_FUNCTION_BLOCK

Usage (by an external method call)

PROGRAM A
VAR MyRoom : LIGHTROOM; END_VAR:

 ... IF MyRoom.DAYTIME THEN ..

END_PROGRAM

Figure 21 – Function block implements an interface (Example) 2260

b) The interface may be used as a type of a variable: 2261

 In this case this variable is a reference to an instance of a function block implementing this 2262
interface. The variable shall be assigned to an instance of a function block before it can be 2263
used. 2264

 A variable of a type INTERFACE may be assigned to the following values: 2265

1. an instance of a function block implementing the interface. 2266

2. an instance of a function block which is derived from a function block type implement-2267
ing the interface. 2268

3. another variable of the same type. 2269

4. the special invalid reference NULL. This is also the initial value of the variable, if not 2270
declared otherwise. 2271

— 97 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 A variable of a type of an interface may be compared for equality with NULL. So the variable 2272
shall be tested to be a valid reference before calling a method of the interface. 2273

 A variable of a type of an INTERFACE may be compared for equality with another variable 2274
of the same type. The result shall be TRUE, if the variables reference the same instance, or 2275
if both variables equal to NULL. 2276

— 98 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

EXAMPLE 2 An interface with two methods and a function block using this methods. 2277

Declaration

INTERFACE ROOM // same as Example 1
 METHOD DAYTIME : VOID; // called during daytime
 END_METHOD

 METHOD NIGHTTIME : VOID; // called during nighttime
 END_METHOD
END_INTERFACE

FUNCTION_BLOCK ROOM_CTRL
 VAR_INPUT
 RM: ROOM; // interface ROOM as type of an (input) variable !
 END_VAR

 VAR_EXTERNAL
 Actual_TOD : TOD; // global time definition
 END_VAR

IF (RM = NULL) THEN // Important: test valid reference!
 RETURN;
END_IF

IF Actual_TOD >= TOD#20:15 OR Actual_TOD <= TOD#6:00

 THEN RM.NIGHTTIME() // call method of RM

 ELSE RM.DAYTIME(); //

END_IF

END_FUNCTION_BLOCK

Figure 22 – Function block type with calls of the methods of an interface (Example) 2278

EXAMPLE 3: A program passing a specific instance to a variable of type interface 2279
PROGRAM B
VAR
 MyRoom : LIGHTROOM; // Figure 21 - FB LIGHTROOM implements ROOM with methods
 MyRoomCtrl : ROOM_CTRL; // Figure 23 - FB ROOM_CTRL calls
END_VAR

 MyRoomCtrl(RM := MyRoom);

END_PROGRAM

Figure 23 –Passing of function block instance (Example) 2280

6.5.4.4 Inheritance 2281

6.5.4.4.1 General 2282
For the purpose of the PLC languages the concept of inheritance defined in the general object-2283
oriented programming is here adapted as a way to create 2284

a) new function block types which include methods as defined in 6.5.4.2 or 2285

b) new interfaces as defined in 6.5.4.3 using function block or interfaces that have already 2286
been defined. 2287

This is possible in a hierarchical tree like it is illustrated in Figure 24. 2288

The new function blocks and interfaces are called derived (child) function block and derived 2289
(child) interface respectively. The already existing predecessors are called base (parent) func-2290
tion block and base (parent) interface respectively. 2291

When derived elements inherit only from one base element it is known as single inheritance. 2292

NOTE In this standard only the single inheritance is defined. Multiple inheritance with more than one base ele-2293
ment is not defined by this standard. 2294

— 99 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

6.5.4.4.2 Function block inheritance (EXTENDS, OVERRIDE) 2295

A function block type may be derived from an existing function block type (the base function 2296
block type) using the keyword EXTENDS. 2297
 2298
The following rules apply to inheritance: 2299

1. The derived function block type inherits all methods and all variables from its base function 2300
bock type.. 2301

Note 1 That means, it contains all inputs, outputs and local variables and all methods without explicitly declaring 2302
it. An exception to the inheritance of methods is described in rule 2. 2303
Note 2 The function block type used as a base function block, may itself be a derived function block type. Then it 2304
passes on to its heir also the methods and variables it inherited. 2305
Note 3 If the base function block type changes its definition, all derived function block types (and their heirs) 2306
have also this changed functionality. 2307
Note 4 The derived function block type may have variables and methods in addition to its base function block and 2308
thus create new functionality. 2309

2. In order to override base methods the following rules apply: 2310

a) The method that overrides shall be declared with the additional keyword OVERRIDE fol-2311
lowing the keyword METHOD. 2312

b) The method that overrides shall have the same signature (i.e.: the same name, access 2313
specifier, inputs, outputs and return type) within the scope of the derived function block 2314
type. 2315

 Note The newly declared method replaces the method declaration of the base function block. 2316
 2317
EXAMPLE 1 (see Figure 24) 2318
Illustration of the hierarchy of inheritance: 2319

a) Interface inheritance as defined in 6.5.4.4.3: 2320
Using the keyword EXTENDS for the derived interface 2321

 2322
b) FB implementation of an interface using the keyword IMPLEMENTS as defined in 6.5.4.3.3 2323

 2324
c) Function Block inheritance as defined in 6.5.4.4.2: 2325

Using keyword 2326
- EXTENTS for the derived FB and 2327
- OVERRIDE for overriding a base method 2328
 2329

— 100 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 2330
Figure 24 – Interface inheritance and function block inheritance (Example) 2331

The following situations shall be treated as an error according to the provisions 5.1d): 2332

1. The derived function block type defines a variable with the name of a variable or method 2333
already contained in its base function block type, whether defined or inherited. 2334

2. The derived function block type defines a method with the name of a method already con-2335
tained in its base function block, but: 2336

• the derived function block type has no access to the parent’s method (PRIVATE or 2337
INTERNAL in a different namespace) or 2338

• the new method does not have the same signature (i.e.: the same name, access speci-2339
fier, inputs, outputs and return type) or 2340

• the new method has a different access specifier or 2341

• the new method does not have the keyword OVERRIDE. 2342

3. The derived function block defines a method with the name of a variable already contained 2343
in its parent function block. 2344

4. A function block is its own base function block, whether directly or indirectly. 2345

FB C EXTENDS B
METHOD x

FB C1 EXTENDS C
METHOD x

FB C2 EXTENDS C
METHOD y OVERRIDE x

FB C11 EXTENDS C1
METHOD y

FB C21 EXTENDS C2
METHOD y

Interface A
METHOD x

Interface A1 EXTENDS A
METHOD x

Interface A2 EXTENDS A
METHOD x

FUNCTION_BLOCK B IMPLEMENTS A1
METHOD x

b) FB implementation (IMPLEMENTS)

a) Interface inheritance (EXTENDS)

Interface A21 EXTENDS A2
METHOD x

FB M
METHOD g

c) FB inheritance (EXTENDS)

— 101 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

EXAMPLE see Figure 25 2346
 A function block that extends the function block LIGHTROOM 2347

FUNCTION_BLOCK LIGHT2ROOM EXTENDS LIGHTROOM // see example Figure 21
VAR
 LIGHT2 : BOOL; // second light

END_VAR

PUBLIC OVERRIDE METHOD DAYTIME : VOID
 LIGHT := FALSE; // access to parent’s variable
 LIGHT2 := FALSE; // specific implementation
END_METHOD

PUBLIC OVERRIDE METHOD NIGHTTIME : VOID
 LIGHT := TRUE; // access to parent’s variable
 LIGHT2 := TRUE; // specific implementation
END_METHOD

END_FUNCTION_BLOCK

Figure 25 –Inheritance and override (Example) 2348

6.5.4.4.3 Interface inheritance (EXTENDS) 2349

An interface may be derived from an existing interface (the base interface) using the keyword 2350
EXTENDS. See example in 6.5.4.4.2 The following rules shall apply: 2351

1. The derived (child) interface inherits all method prototypes defined in 6.5.4.3.2 from its base 2352
(parent) interface. 2353

 The interface used as a base interface, may itself be a derived interface. Then it passes on 2354
to its descendants (derived) also the methods and variables it inherited. 2355

 If the base interface changes its definition, all derived interfaces (and their descendants) 2356
have also this changed functionality. 2357

2. The derived interface may have method prototypes in addition to its base interface and thus 2358
create new functionality. 2359

The implementation of interfaces shall be according to following rules:. 2360

1. A function block type inherits all interfaces from its base function block type and may also 2361
override methods implementing method-prototypes. 2362

2. The implementation of a method-prototype may also be inherited from the base function 2363
block type, even if the base function block type does not implement the interface. 2364

The following situations shall be treated as an error according to the provisions of 5.1 d): 2365

1. If a function block type or its base types do not implement all methods defined in the inter-2366
face. 2367

2. If a function block type or its base type implement a method with the same name as defined 2368
in the interface but with another set (or order) of VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT-2369
variables or with another method result. 2370

The following situations shall be treated as errors: 2371
 2372
1. An interface defines a additional method prototype (like in rule 2) with the name of a method 2373

prototype of one of its base interfaces. 2374
2. Two or more parent interfaces contain method prototypes with the same name. 2375

— 102 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

6.5.4.4.4 Name Binding 2376
Name binding is the association of a method name with a method implementation. The binding 2377
of a name before the program runs is called static binding. A binding performed when the pro-2378
gram runs is dynamic binding. 2379

In case of an internal method call as defined 6.5.4.2.3, the overriding feature causes a differ-2380
ence between the static and dynamic form of name binding: 2381

1. Static binding associates the method name to the method implementation of the function 2382
block type which, respectively, makes the internal method call or contains the method mak-2383
ing the internal method call. 2384

2. Dynamic binding associates the method name to the method implementation of the actual 2385
type of the function block instance. 2386

A particular implementation supporting the overriding feature shall state in the feature Table 45 2387
whether it resolves internal method calls using static or dynamic binding. 2388

EXAMPLE 2389
Overriding with effect on dynamic binding 2390
In the following example the function block type CIRCLE contains an internal call of its method PI with low 2391
accuracy to calculate the circumference of a circle. The derived function block type CIRCLE2 overrides this 2392
definition with a more accurate definition of PI. 2393
In case of static binding the call PI() refers to CIRCLE.PI. In case of dynamic binding the call PI() re-2394
fer either to CIRCLE.PI or to CIRCLE2.PI, according to the type of the instance on which the call of 2395
CIRCUMFERENCE was performed. 2396
In case of static binding, CUMF1 and CUMF2 have the same value. In case of dynamic binding, CUMF2 is 2397
more accurate than CUMF1. 2398

FUNCTION_BLOCK CIRCLE

PUBLIC METHOD PI : LREAL
 PI := 3.1415;
END_METHOD

PUBLIC METHOD CIRCUMFERENCE : LREAL
VAR_INPUT
 DIAMETER : LREAL;
END_VAR
 CIRCUMFERENCE := PI() * DIAMETER; // internal call of PI
END_METHOD
END_FUNCTION_BLOCK

FUNCTION_BLOCK CIRCLE2 EXTENDS CIRCLE
PUBLIC OVERRIDE METHOD PI : LREAL
 PI := 3.1415926535897;
END_METHOD
END_FUNCTION_BLOCK

PROGRAM TEST
VAR
 CIR1 : CIRCLE;
 CIR2 : CIRCLE2;
 CUMF1 : LREAL;
 CUMF2 : LREAL;
 DYNAMIC : BOOL;
END_VAR
 CUMF1 := CIR1.CIRCUMFERENCE(1.0);
 CUMF2 := CIR2.CIRCUMFERENCE(1.0);
 DYNAMIC := CUMF1 <> CUMF2;
END_PROGRAM

Figure 26 – Dynamic vs. static Name binding (Example) 2399

6.5.4.4.5 Access reference (THIS/SUPER) 2400

With the keyword “THIS”, a reference to the own instance can be accessed in the scope of a 2401
function block. This reference may be passed to a variable of the type of an INTERFACE ac-2402
cording to the rules given in 6.5.4.3.3. 2403

— 103 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

http://en.wikipedia.org/wiki/Dynamic_binding

EXAMPLE 1: 2404

FUNCTION_BLOCK DARKROOM IMPLEMENTS ROOM // ROOM see example Figure 21
VAR_EXTERNAL

 RoomCtrl : ROOM_CTRL;

END_VAR

PUBLIC METHOD DAYTIME : VOID
END_METHOD
PUBLIC METHOD NIGHTTIME : VOID
END_METHOD

// function block body

 RoomCtrl(RM := THIS); // call room ctrl with own instance

END_FUNCTION_BLOCK

Figure 27 – Usage of THIS (Example) 2405

With the keyword “SUPER”, the base class implementation of a method can be called. Thus, no 2406
dynamic binding takes place, but the base function block’s method is called despite the actual 2407
instance of the function block. 2408

EXAMPLE 2: Alternative implementation of LIGHT2ROOM 2409

FUNCTION_BLOCK LIGHT2ROOM EXTENDS LIGHTROOM // LIGHTROOM see example Figure 21
VAR
 LIGHT2 : BOOL; // second light

END_VAR

PUBLIC OVERRIDE METHOD DAYTIME : VOID
 SUPER.DAYTIME(); // access to parent variable
 LIGHT2 := TRUE; // specific implementation
END_METHOD

PUBLIC OVERRIDE METHOD NIGHTTIME : VOID
 SUPER.NIGHTTIME(); // access to parent variable
 LIGHT2 := FALSE; // specific implementation
END_METHOD

END_FUNCTION_BLOCK

Figure 28 – Usage of SUPER (Example) 2410

6.5.4.4.6 Polymorphism 2411
Polymorphism in object oriented programming is the ability of one type to appear as and be 2412
used like another type. This means that the first type derives from the second type or the first 2413
type implements an interface that represents second type. 2414

NOTE Since a variable of interface type might refer to different instances of different derived function block types 2415
with completely different implementations of the called method, it is necessary to use dynamic binding. 2416
EXAMPLE Polymorphism. 2417
PROGRAM
VAR
 MyRoom1 : LIGHTROOM; // see example Figure 21
 MyRoom2 : LIGHT2ROOM; // see example Figure 28
 MyRoomCtrl : ROOM_CTRL; // see example Figure 22
END_VAR

 MyRoomCtrl(RM := MyRoom1); // calls in MyRoomCtrl will call methods of LIGHTROOM
 MyRoomCtrl(RM := MyRoom2); // calls in MyRoomCtrl will call methods of LIGHT2ROOM

END_PROGRAM

Figure 29 – Polymorphism (Example) 2418

 2419

— 104 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

6.5.4.4.7 ABSTRACT function block and method 2420

The ABSTRACT modifier may be used with function blocks or with single methods. 2421

 Abstract function block 2422

The use the ABSTRACT modifier in a Function Block declaration indicates that a function 2423
block is intended to be a base type of other Function Blocks to be used for inheritance as 2424
explained in 6.5.4.4.1. 2425

The abstract function block has the following features: 2426

o An abstract function block cannot be instantiated. 2427
o An abstract function block shall only contain abstract methods. 2428
A (non-abstract) function block derived from an abstract function block shall include actual 2429
implementations of all inherited abstract methods. 2430

• Abstract method 2431

If one or more methods are marked as ABSTRACT 2432

a) in a function block declaration, or 2433

b) in an abstract function block 2434

then they shall be implemented by function blocks that derive from the abstract function 2435
block. 2436

6.5.5 Programs 2437
A program is defined in IEC 61131-1 as a “logical assembly of all the programming language 2438
elements and constructs necessary for the intended signal processing required for the control 2439
of a machine or process by a programmable controller system.” 2440

Subclause 4.1 of this Part describes the place of programs in the overall software model of a 2441
programmable controller; subclause 4.2 describes the means available for inter- and intra-2442
program communication; and subclause 4.3 describes the overall process of program devel-2443
opment. 2444

The declaration and usage of programs is identical to that of function blocks as defined in 2445
 6.5.3, with the additional features shown in Table 46 and the following differences: 2446

1. The delimiting keywords for program declarations shall be PROGRAM...END_PROGRAM. 2447

2. A program can contain a VAR_ACCESS...END_VAR construction, which provides a means 2448
of specifying named variables which can be accessed by some of the communication ser-2449
vices specified in IEC 61131-5. An access path associates each such variable with an in-2450
put, output or internal variable of the program. The format and usage of this declaration 2451
shall be as described in 6.7.2 and in IEC 61131-5. 2452

3. Programs can only be instantiated within resources, as defined in 6.7.2, while function 2453
blocks can only be instantiated within programs or other function blocks. 2454

4. A program can contain location assignments as described in 6.4.4 in the declarations of its 2455
global and internal variables. Location assignments with not fully specified direct represen-2456
tation as described in 6.4.2 and 6.4.4 can only be used in the declaration of internal vari-2457
ables of a program. 2458

The declaration and use of programs are illustrated in Figure 35. 2459

Limitations on the size of programs in a particular resource are implementation dependen-2460
cies. 2461

— 105 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 46 - Program declaration features 2462

No. DESCRIPTION

1a to 9b Same as features 1a to 9b, respectively, of Table 40

10 Formal input and output variables

11 to 14 Same as features 1 to 4, respectively, of Table 20

15 to 17 Same as features 1 to 3, respectively, of Table 21

18 Feature number not used

19 Use of directly represented variables

20 VAR_GLOBAL...END_VAR declaration within a PROGRAM

21 VAR_ACCESS...END_VAR declaration within a PROGRAM

22a VAR_EXTERNAL declarations within PROGRAM type declarations

22b VAR_EXTERNAL CONSTANT declarations within PROGRAM type declarations

23 VAR_GLOBAL CONSTANT declarations within PROGRAM type declarations

24 VAR_TEMP declarations within PROGRAM type declarations

6.6 Sequential Function Chart (SFC) elements 2463

6.6.1 General 2464
This subclause defines sequential function chart (SFC) elements for use in structuring the in-2465
ternal organization of a programmable controller program organization unit, written in one of 2466
the languages defined in this standard, for the purpose of performing sequential control func-2467
tions. The definitions in this subclause are derived from IEC 60848, with the changes neces-2468
sary to convert the representations from a documentation standard to a set of execution control 2469
elements for a programmable controller program organization unit. 2470

The SFC elements provide a means of partitioning a programmable controller program organi-2471
zation unit into a set of steps and transitions interconnected by directed links. Associated with 2472
each step is a set of actions, and with each transition is associated a transition condition. 2473

Since SFC elements require storage of state information, the only program organization units 2474
which can be structured using these elements are function blocks and programs. 2475

If any part of a program organization unit is partitioned into SFC elements, the entire program 2476
organization unit shall be so partitioned. If no SFC partitioning is given for a program organiza-2477
tion unit, the entire program organization unit shall be considered to be a single action which 2478
executes under the control of the calling entity. 2479

6.6.2 Steps 2480
A step represents a situation in which the behaviour of a program organization unit with respect 2481
to its inputs and outputs follows a set of rules defined by the associated actions of the step. A 2482
step is either active or inactive. At any given moment, the state of the program organization 2483
unit is defined by the set of active steps and the values of its internal and output variables. 2484

As shown in Table 47, a step shall be represented graphically by a block containing a step 2485
name in the form of an identifier as defined in 6.1.2, or textually by a STEP...END_STEP con-2486
struction. The directed link(s) into the step can be represented graphically by a vertical line at-2487
tached to the top of the step. The directed link(s) out of the step can be represented by a verti-2488
cal line attached to the bottom of the step. Alternatively, the directed links can be represented 2489
textually by the TRANSITION... END_TRANSITION construction defined in 6.6.3. 2490

The step flag (active or inactive state of a step) can be represented by the logic value of a Boo-2491
lean structure element ***.X, where *** is the step name, as shown in Table 47. This Boo-2492
lean variable has the value 1 when the corresponding step is active, and 0 when it is inactive. 2493
The state of this variable is available for graphical connection at the right side of the step as 2494
shown in Table 47. 2495

— 106 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Similarly, the elapsed time, ***.T, since initiation of a step can be represented by a structure 2496
element of type TIME, as shown in Table 47. When a step is deactivated, the value of the step 2497
elapsed time shall remain at the value it had when the step was deactivated. When a step is 2498
activated, the value of the step elapsed time shall be reset to t#0s. 2499

The scope of step names, step flags, and step times shall be local to the program organization 2500
unit in which the steps appear. 2501

The initial state of the program organization unit is represented by the initial values of its inter-2502
nal and output variables, and by its set of initial steps, i.e., the steps which are initially active. 2503
Each SFC network, or its textual equivalent, shall have exactly one initial step. 2504

An initial step can be drawn graphically with double lines for the borders. When the character 2505
set defined in 6.1.1 is used for drawing, the initial step shall be drawn as shown in Table 47. 2506

For system initialization as defined in 6.4.3, the default initial elapsed time for steps is t#0s, 2507
and the default initial state is BOOL#0 for ordinary steps and BOOL#1 for initial steps. How-2508
ever, when an instance of a function block or a program is declared to be retentive for in-2509
stance, as in feature 3 of Table 40, the states and (if supported) elapsed times of all steps con-2510
tained in the program or function block shall be treated as retentive for system initialization as 2511
defined in 6.4.3. 2512

The maximum number of steps per SFC and the precision of step elapsed time are implemen-2513
tation dependencies. 2514

It shall be an error if: 2515

1. an SFC network does not contain exactly one initial step; 2516
2. a user program attempts to assign a value directly to the step state or the step time. 2517

Table 47 - Step features 2518

No. REPRESENTATION DESCRIPTION

1

Step - graphical form
with directed links
"***" = step name

Initial step - graphical form with directed links
"***" = name of initial step

2 STEP *** :
 (* Step body *)
END_STEP

Step - textual form
without directed links
"***" = step name

 INITIAL_STEP *** :
 (* Step body *)
END_STEP

Initial step - textual form
without directed links
"***" = name of initial step

3a a

***.X

Step flag - general form
"***" = step name
***.X = BOOL#1 when *** is active, BOOL#0 otherwise

3b a

Step flag - direct connection
of Boolean variable ***.X to
right side of step "***"

4 a

***.T

Step elapsed time - general form
"***" = step name
***.T = a variable of type TIME

— 107 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

NOTE The upper directed link to an initial step is not present if it has no predecessors.

a When feature 3a, 3b, or 4 is supported, it shall be an error if the user program attempts to modify the associ-
ated variable. For example, if S4 is a step name, then the following statements would be errors in the ST lan-
guage defined in 7.3:

 S4.X := 1 ; (* ERROR *)
 S4.T := t#100ms ; (* ERROR *)

6.6.3 Transitions 2519
A transition represents the condition whereby control passes from one or more steps preceding 2520
the transition to one or more successor steps along the corresponding directed link. The transi-2521
tion shall be represented by a horizontal line across the vertical directed link. 2522

The direction of evolution following the directed links shall be from the bottom of the predeces-2523
sor step(s) to the top of the successor step(s). 2524

Each transition shall have an associated transition condition which is the result of the evalua-2525
tion of a single Boolean expression. A transition condition which is always true shall be repre-2526
sented by the symbol 1 or the keyword TRUE. 2527

A transition condition can be associated with a transition by one of the following means, as 2528
shown in Table 48: 2529

1. By placing the appropriate Boolean expression in the ST language defined in 7.3 physically 2530
or logically adjacent to the vertical directed link. 2531

2. By a ladder diagram network in the LD language defined in 8.2, physically or logically adja-2532
cent to the vertical directed link. 2533

3. By a network in the FBD language defined in 8.3, physically or logically adjacent to the ver-2534
tical directed link. 2535

4. By a LD or FBD network whose output intersects the vertical directed link via a connector as 2536
defined in 8.1.2. 2537

5. By a TRANSITION...END_TRANSITION construct using the ST language. This shall con-2538
sist of: 2539

• the keywords TRANSITION FROM followed by the step name of the predecessor step (or, 2540
if there is more than one predecessor, by a parenthesized list of predecessor steps); 2541

• the keyword TO followed by the step name of the successor step (or, if there is more than 2542
one successor, by a parenthesized list of successor steps); 2543

• the assignment operator (:=), followed by a Boolean expression in the ST language, 2544
specifying the transition condition; 2545

• the terminating keyword END_TRANSITION. 2546

6. By a TRANSITION...END_TRANSITION construct using the IL language defined in 7.2. 2547
This shall consist of: 2548

• the keywords TRANSITION FROM followed by the step name of the predecessor step (or, 2549
if there is more than one predecessor, by a parenthesized list of predecessor steps), fol-2550
lowed by a colon (:); 2551

• the keyword TO followed by the step name of the successor step (or, if there is more than 2552
one successor, by a parenthesized list of successor steps); 2553

 beginning on a separate line, a list of instructions in the IL language, the result of whose 2554
evaluation determines the transition condition; 2555

the terminating keyword END_TRANSITION on a separate line. 2556

7. By the use of a transition name in the form of an identifier to the right of the directed link. 2557
This identifier shall refer to a TRANSITION...END_TRANSITION construction defining one 2558
of the following entities, whose evaluation shall result in the assignment of a Boolean value 2559
to the variable denoted by the transition name: 2560

— 108 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

• a network in the LD or FBD language; 2561

• a list of instructions in the IL language; 2562

• an assignment of a Boolean expression in the ST language. 2563
The scope of a transition name shall be local to the program organization unit in which the 2564
transition is located. 2565

It shall be an error in the sense of 5.1 if any “side effect” (for instance, the assignment of a 2566
value to a variable other than the transition name) occurs during the evaluation of a transition 2567
condition. 2568

The maximum number of transitions per SFC and per step are implementation dependencies. 2569

Table 48 - Transitions and transition conditions 2570

No. Example Description

1a

Predecessor step

Transition condition physically or logi-
cally adjacent to the transition
using ST language

Successor step

2a

Predecessor step

Transition condition physically or logi-
cally adjacent to the transition
using LD language

Successor step

3a

Predecessor step

Transition condition physically or logi-
cally adjacent to the transition
using FBD language

Successor step

4a

Use of connector:

predecessor step

transition connector

successor step

4a

4 b

Transition condition:
Using LD language

Using FBD language

— 109 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Example Description

5 b

STEP STEP7: END_STEP
TRANSITION FROM STEP7 TO STEP8
 := %IX2.4 & %IX2.3 ;
END_TRANSITION
STEP STEP8: END_STEP

Textual equivalent of feature1
using ST language

6 b

STEP STEP7: END_STEP
TRANSITION FROM STEP7 TO STEP 8:
 LD %IX2.4
 AND %IX2.3
END_TRANSITION
STEP STEP8: END_STEP

Textual equivalent
of feature 1
using IL language

7a

Use of transition name:

predecessor step

transition name

successor step

7a

Transition condition using LD language

7 b

Transition condition using FBD language

7c TRANSITION TRAN78 FROM STEP7 TO STEP8:
 LD %IX2.4
 AND %IX2.3
END_TRANSITION

Transition condition using IL language

7d TRANSITION TRAN78 FROM STEP7 TO STEP8
 := %IX2.4 & %IX2.3 ;
END_TRANSITION

Transition condition using ST language

a If feature 1 of Table 47 is supported, then one or more of features 1, 2, 3, 4, or 7 of this table shall be sup-
ported.

b If feature 2 of Table 47 is supported, then feature 5 or 6 of this table, or both, shall be supported.

6.6.4 Actions 2571

6.6.4.1 General 2572
An action can be a Boolean variable, a collection of instructions in the IL language defined in 2573
 8.2, a collection of statements in the ST language defined in 7.3, a collection of rungs in the LD 2574
language defined in 8.2, a collection of networks in the FBD language defined in 8.2.6, or a 2575
sequential function chart (SFC) organized . 2576

Actions shall be declared via one or more of the mechanisms defined in 6.6.4.2, and shall be 2577
associated with steps via textual step bodies or graphical action blocks, as defined in 6.6.4.3. 2578
The details of action block representation are defined in 6.6.4.5. Control of actions shall be ex-2579
pressed by action qualifiers as defined in 6.6.4.6. 2580

It shall be an error if the value of a Boolean variable used as the name of an action is modified 2581
in any manner other than as the name of one or more actions in the same SFC. 2582

— 110 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

A programmable controller implementation which supports SFC elements shall provide one or 2583
more of the mechanisms defined in Table 49 for the declaration of actions. The scope of the 2584
declaration of an action shall be local to the program organization unit containing the declara-2585
tion. 2586

6.6.4.2 Declaration 2587
Zero or more actions shall be associated with each step. A step which has zero associated ac-2588
tions shall be considered as having a WAIT function, that is, waiting for a successor transition 2589
condition to become true. 2590

Table 49 - Declaration of actions a,b 2591

No. Example Feature

1 Any Boolean variable declared in a VAR or VAR_OUTPUT block, or their graphical equivalents, can be an
action.

2l

Graphical declaration in LD
language

2s

Inclusion of SFC elements
in action

2f

Graphical declaration
in FBD language

3s ACTION ACTION_4:
 %QX17 := %IX1 & %MX3 & S8.X ;
 FF28(S1 := (C<D));
 %MX10 := FF28.Q;
END_ACTION

Textual declaration in ST
language

— 111 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Example Feature

3i ACTION ACTION_4:
 LD S8.X
 AND %IX1
 AND %MX3
 ST %QX17
 LD C
 LT D
 S1 FF28
 LD FF28.Q
 ST %MX10
END_ACTION

Textual declaration in IL
language

NOTE The step flag S8.X is used in these examples to obtain the desired result such that, when S8 is deacti-
vated, %QX17 := 0.

a If feature 1 of Table 47 is supported, then one or more of the features in this table, or feature 4 of Table 50,
shall be supported.

b If feature 2 of Table 47 is supported, then one or more of features 1, 3s, or 3i of this table shall be supported.

6.6.4.3 Association with steps 2592

A programmable controller implementation which supports SFC elements shall provide one or 2593
more of the mechanisms defined in Table 50 for the association of actions with steps. The 2594
maximum number of action blocks per step is an implementation dependency.. 2595

Table 50 - Step/action association 2596

No. Example Feature

1

Action block physically or logically
adjacent to the step

2

Concatenated action blocks physi-
cally or logically adjacent to the
step

3

STEP S8:
 ACTION_1(L,t#10s,DN1) ;
 ACTION_2(P) ;
 ACTION_3(N) ;
END_STEP

Textual step body

4 a

Action block
"d" field

a When feature 4 is used, the corresponding action name cannot be used in any other action block.

6.6.4.4 2597

6.6.4.5 Action blocks 2598
As shown in Table 51, an action block is a graphical element for the combination of a Boolean 2599
variable with one of the action qualifiers specified in 6.6.4.6 to produce an enabling condition, 2600
according to the rules given in 6.6.4.7, for an associated action. 2601

— 112 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

The action block provides a means of optionally specifying Boolean “indicator” variables, indi-2602
cated by the “c” field in Table 51, which can be set by the specified action to indicate its com-2603
pletion, timeout, error conditions, etc. If the “c” field is not present, and the “b” field specifies 2604
that the action shall be a Boolean variable, then this variable shall be interpreted as the “c” 2605
variable when required. If the “c” field is not defined, and the “b” field does not specify a Boo-2606
lean variable, then the value of the “indicator” variable is considered to be always FALSE. 2607

When action blocks are concatenated graphically as illustrated in Table 51, such concatena-2608
tions can have multiple indicator variables, but shall have only a single common Boolean input 2609
variable, which shall act simultaneously upon all the concatenated blocks. 2610

As well as being associated with a step, an action block can be used as a graphical element in 2611
the LD or FBD languages specified in clause 8. In this case, signal or power flow through an 2612
action block shall follow the rules specified in 8.1.3. 2613

Table 51 - Action block features 2614

No. Feature Graphical form/example

1 a "a" : Qualifier as per 6.6.4.6

2 "b" : Action name

3 b "c" : Boolean "indicator" variables

 "d" : Action using:

4 - IL language

5 - ST language

6 - LD language

7 - FBD language

8 Use of action blocks in ladder dia-
grams

9 Use of action blocks in function block
diagrams

a Field “a” can be omitted when the qualifier is “N”.
b Field “c” can be omitted when no indicator variable is used.

6.6.4.6 Action qualifiers 2615
Associated with each step/action association defined in 6.6.4.3, or each occurrence of an ac-2616
tion block as defined in 6.6.4.5, shall be an action qualifier. The value of this qualifier shall be 2617
one of the values listed in Table 52. In addition, the qualifiers L, D, SD, DS, and SL shall have 2618
an associated duration of type TIME. 2619

The control of actions using these qualifiers is defined in 6.6.4.7. 2620

Table 52 - Action qualifiers 2621

No. Qualifier Explanation

1 None Non-stored (null qualifier)

2 N Non-stored

3 R overriding Reset

4 S Set (Stored)

5 L time Limited

6 D time Delayed

— 113 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

7 P Pulse

8 SD Stored and time Delayed

9 DS Delayed and Stored

10 SL Stored and time Limited

11 P1 Pulse (rising edge)

12 P0 Pulse (falling edge)

6.6.4.7 Action control 2622

The control of actions shall be functionally equivalent to the application of the following rules: 2623

a) Associated with each action shall be the functional equivalent of an instance of the 2624
ACTION_CONTROL function block defined in Figure 30 and Figure 31. If the action is de-2625
clared as a Boolean variable, as defined in 6.6.4.2, the Q output of this block shall be the 2626
state of this Boolean variable. If the action is declared as a collection of statements or net-2627
works, as defined in 6.6.4.2, then this collection shall be executed continually while the A 2628
(activation) output of the ACTION_CONTROL function block stands at BOOL#1. In this case, 2629
the state of the output Q (called the "action flag") can be accessed within the action by 2630
reading a read-only Boolean variable which has the form of a reference to the Q output of a 2631
function block instance whose instance name is the same as the corresponding action 2632
name, for example, ACTION1.Q. 2633

The manufacturer may opt for a simpler implementation as shown in Figure 31 b). In this 2634
case, if the action is declared as a collection of statements or networks, as defined in 2635
 6.6.4.2, then this collection shall be executed continually while the Q output of the ACTION_ 2636
CONTROL function block stands at BOOL#1. In any case the manufacturer shall specify 2637
which one of the features given in Table 53 is supported. 2638

NOTE 1 The condition Q=FALSE will ordinarily be used by an action to determine that it is being executed for the 2639
final time during its current activation. 2640
NOTE 2 The value of Q will always be FALSE during execution of actions called by P0 and P1 qualifiers. 2641
NOTE 3 The value of A will be TRUE for only one execution of an action called by a P1 or P0 qualifier. For all other 2642
qualifiers, A will be true for one additional execution following the falling edge of Q. 2643
NOTE 4 Access to the functional equivalent of the Q or A outputs of an ACTION_CONTROL function block from out-2644
side of the associated action is an implementation-dependent feature. 2645
b) A Boolean input to the ACTION_CONTROL block for an action shall be said to have an as-2646

sociation with a step as defined in 6.6.4.2, or with an action block as defined in 6.6.4.5, if 2647
the corresponding qualifier is equivalent to the input name (N, R, S, L, D, P, P0, P1, SD, 2648
DS, or SL). The association shall be said to be active if the associated step is active, or if 2649
the associated action block's input has the value BOOL#1. The active associations of an 2650
action are equivalent to the set of active associations of all inputs to its ACTION_CONTROL 2651
function block. 2652

A Boolean input to an ACTION_CONTROL block shall have the value BOOL#1 if it has at 2653
least one active association, and the value BOOL#0 otherwise. 2654

c) The value of the T input to an ACTION_CONTROL block shall be the value of the duration 2655
portion of a time-related qualifier (L, D, SD, DS, or SL) of an active association. If no such 2656
association exists, the value of the T input shall be t#0s. 2657

d) It shall be an error in the sense of 5.1 if one or more of the following conditions exist: 2658

• More than one active association of an action has a time-related qualifier (L, D, SD, DS, 2659
or SL). 2660

• The SD input to an ACTION_CONTROL block has the BOOL#1 when the Q1 output of its 2661
SL_FF block has the value BOOL#1. 2662

• The SL input to an ACTION_CONTROL block has the value BOOL#1 when the Q1 output 2663
of its SD_FF block has the value BOOL#1. 2664

— 114 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

e) It is not required that the ACTION_CONTROL block itself be implemented, but only that the 2665
control of actions be equivalent to the preceding rules. Only those portions of the action 2666
control appropriate to a particular action need be instantiated, as illustrated in Figure 32. In 2667
particular, note that simple MOVE (:=) and Boolean OR functions suffice for control of Boo-2668
lean variable actions if the latter's associations have only “N” qualifiers. 2669

a) With “final scan” logic (see Figure 31 a) b) Without “final scan” logic (see Figure 31 b)

NOTE These interfaces are not visible to the user. 2670
Figure 30 - ACTION_CONTROL function block - External interface 2671

 2672

— 115 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

a) Body with “final scan” logic

— 116 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

b) Body without “final scan” logic

NOTE 1 Instances of these function block types are not visible to the user. 2673
NOTE 2 The external interfaces of these function block types are given in Figure 30. 2674

Figure 31 - ACTION_CONTROL function block body 2675

— 117 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

a) SFC representation

— 118 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

b) Functional equivalent

NOTE The complete SFC network and its associated declarations are not shown in this example. 2676
Figure 32 - Action control example 2677

Table 53 - Action control features a 2678

No. Description

1 per Figure 30 a) and Figure 31 a)

2 per Figure 30 b) and Figure 31 b)

a These two features are mutually exclusive, i.e., only one of the two shall be supported
in a given SFC implementation.

6.6.5 Rules of evolution 2679
The initial situation of a SFC network is characterized by the initial step which is in the active 2680
state upon initialization of the program or function block containing the network. 2681

Evolutions of the active states of steps shall take place along the directed links when caused 2682
by the clearing of one or more transitions. 2683

A transition is enabled when all the preceding steps, connected to the corresponding transition 2684
symbol by directed links, are active. The clearing of a transition occurs when the transition is 2685
enabled and when the associated transition condition is true. 2686

The clearing of a transition causes the deactivation (or "resetting") of all the immediately pre-2687
ceding steps connected to the corresponding transition symbol by directed links, followed by 2688
the activation of all the immediately following steps. 2689

The alternation step/transition and transition/step shall always be maintained in SFC element 2690
connections, that is: 2691

• Two steps shall never be directly linked; they shall always be separated by a transition. 2692

• Two transitions shall never be directly linked; they shall always be separated by a step. 2693

— 119 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

When the clearing of a transition leads to the activation of several steps at the same time, the 2694
sequences to which these steps belong are called simultaneous sequences. After their simul-2695
taneous activation, the evolution of each of these sequences becomes independent. In order to 2696
emphasize the special nature of such constructs, the divergence and convergence of simulta-2697
neous sequences shall be indicated by a double horizontal line. 2698

It shall be an error if the possibility can arise that non-prioritized transitions in a selection di-2699
vergence, as shown in feature 2a of Table 54, are simultaneously true. The user may make 2700
provisions to avoid this error as shown in features 2b and 2c of Table 54. 2701

Table 51 defines the syntax and semantics of the allowed combinations of steps and transi-2702
tions. 2703

The clearing time of a transition may theoretically be considered as short as one may wish, but 2704
it can never be zero. In practice, the clearing time will be imposed by the programmable con-2705
troller implementation. For the same reason, the duration of a step activity can never be con-2706
sidered to be zero. 2707

Several transitions which can be cleared simultaneously shall be cleared simultaneously, within 2708
the timing constraints of the particular programmable controller implementation and the priority 2709
constraints defined in Table 54. 2710

Testing of the successor transition condition(s) of an active step shall not be performed until 2711
the effects of the step activation have propagated throughout the program organization unit in 2712
which the step is declared. 2713

Figure 33 illustrates the application of these rules. In this figure, the active state of a step is 2714
indicated by the presence of an asterisk (*) in the corresponding block. This notation is used 2715
for illustration only, and is not a required language feature. 2716

The application of the rules given in this subclause cannot prevent the formulation of “unsafe” 2717
SFCs, such as the one shown in Figure 34 a), which may exhibit uncontrolled proliferation of 2718
tokens. Likewise, the application of these rules cannot prevent the formulation of “unreachable” 2719
SFCs, such as the one shown in Figure 34 b), which may exhibit “locked up” behavior. The 2720
programmable controller system shall treat the existence of such conditions as errors as de-2721
fined in 5.1. 2722

The maximum allowed widths of the “divergence” and “convergence” constructs in Table 54 are 2723
implementation dependencies. 2724

Table 54 - Sequence evolution 2725

No. Example Rule

1

Single sequence:

The alternation step-transition is repeated in series.

EXAMPLE
An evolution from step S3 to step S4 takes place if and only if step
S3 is in the active state and the transition condition c is TRUE.

— 120 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Example Rule

2a

Divergence of sequence selection:

A selection between several sequences is represented by as many
transition symbols, under the horizontal line, as there are different
possible evolutions. The asterisk denotes left-to-right priority of
transition evaluations.

EXAMPLE
An evolution takes place from S5 to S6 if S5 is active and the tran-
sition condition e is TRUE (independent of the value of f), or from
S5 to S8 only if S5 is active and f is TRUE and e is FALSE.

2b

Divergence of sequence selection:

The asterisk (“ * ”), followed by numbered branches, indicates a
user-defined priority of transition evaluation, with the lowest-num-
bered branch having the highest priority.

EXAMPLE
An evolution takes place from S5 to S8 if S5 is active and the tran-
sition condition f is TRUE (independent of the value of e), or from
S5 to S6 only if S5 is active and e is TRUE and f is FALSE.

2c

Divergence of sequence selection:

The connection (“ + ”) of the branch indicates that the user must
assure that transition conditions are mutually exclusive.

EXAMPLE
An evolution takes place from S5 to S6 if S5 is active and the tran-
sition condition e is TRUE, or from S5 to S8 only if S5 is active and
e is FALSE and f is TRUE.

3

Convergence of sequence selection:

The end of a sequence selection is represented by as many transi-
tion symbols, above the horizontal line, as there are selection
paths to be ended.

EXAMPLE
An evolution takes place from S7 to S10 if S7 is active and the
transition condition h is TRUE, or from S9 to S10 if S9 is active and
j is TRUE.

4a

Simultaneous sequences – divergence:

The double horizontal line of synchronisation can be preceded by a
single transition condition

EXAMPLE
An evolution takes place from S11 to S12, S14, …, if S11 is active
and the transition condition b associated to the common transition
is TRUE. After the simultaneous activation of S12, S14, etc., the
evolution of each sequence proceeds independently.

— 121 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Example Rule

4b

Simultaneous sequences – divergence:

The double horizontal line of synchronisation can be preceded by a
sequence selection convergence

EXAMPLE
An evolution takes place to the steps S3, S6 and S7 if S2 is active and the
transition T2 is TRUE or S5 is active and the transition T6 is true.

4c

Simultaneous sequences – convergence:

Double lines of simultaneous convergence can be followed by
a single transition

EXAMPLE
An evolution takes place from S13, S15, ... to S16 only if all steps
above and connected to the double horizontal line are active and
the transition condition d associated to the common transition is
TRUE.

4d

Simultaneous sequences – convergence:

Double lines of simultaneous convergence can be followed by
a sequence selection divergence

EXAMPLE
An evolution takes place from S5, S4 and S3 to one of the steps S6, S7 or
S8 only if all steps above and connected to the double horizontal line are
active and the transition condition T2, T5 or T6 is TRUE, respectively.

5a
5b
5c

Sequence skip:

A “sequence skip” is a special case of sequence selection (feature
2) in which one or more of the branches contain no steps. features
5a, 5b, and 5c correspond to the representation options given in
features 2a, 2b, and 2c, respectively.

EXAMPLE (feature 5a shown)
An evolution takes place from S30 to S33 if “a” is FALSE and d is
TRUE, that is, the sequence (S31, S32) will be skipped.

— 122 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Example Rule

6a
6b
6c

 Sequence loop:

A “sequence loop” is a special case of sequence selection (feature
2) in which one or more of the branches returns to a preceding
step. Features 6a, 6b, and 6c correspond to the representation op-
tions given in features 2a, 2b, and 2c, respectively.

EXAMPLE (feature 6a shown)

An evolution takes place from S32 to S31 if “c” is false and “d” is
TRUE, that is, the sequence (S31, S32) will be repeated.

7

Directional arrows:

When necessary for clarity, the “less than” (<) character of the
character set defined in 6.1.1 can be used to indicate right-to-left
control flow, and the “greater than” (>) character to represent left-
to-right control flow. When this feature is used, the corresponding
character shall be located between two “-” characters, that is, in
the character sequence “-<-” or “->-” as shown in the accompa-
nying example.

 2726

— 123 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

a) Transition not enabled (NOTE 2)

b) Transition enabled but not cleared (X = 0)

c) Transition cleared (X = 1)

NOTE 1 In this figure, the active state of a step is indicated by the presence of an asterisk (*) in the corresponding 2727
block. This notation is used for illustration only, and is not a required language feature. 2728
NOTE 2 In a), the value of the Boolean variable X may be either TRUE or FALSE. 2729

Figure 33 - Examples of SFC evolution rules 2730

— 124 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

a) SFC error: an “unsafe” SFC

b) SFC error: an “unreachable” SFC

Figure 34 - Examples of SFC errors 2731

— 125 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

6.6.6 Compatibility of SFC elements 2732
SFCs can be represented graphically or textually, utilizing the elements defined above. Table 2733
55 summarizes for convenience those elements which are mutually compatible for graphical 2734
and textual representation, respectively. 2735

Table 55 - Compatible SFC features 2736

 Table Graphical representation Textual representation

Table 47 1, 3a, 3b, 4 2, 3a, 4

Table 48 1, 2, 3, 4, 4a, 4b, 7, 7a, 7b 5, 6, 7c, 7d

Table 49 1, 2l, 2s, 2f 3s, 3i

Table 50 1, 2, 4 3

Table 51 1 to 9 --

Table 52 1 to 10 1 to 10 (textual equivalent)

Table 53 1 to 7 1 to 6

Table 65 All --

6.6.7 SFC compliance requirements 2737

In order to claim compliance with the requirements of 5, the elements shown in Table 56 shall 2738
be supported and the compatibility requirements defined in 6.6.6 shall be fulfilled. 2739

Table 56 - SFC minimal compliance requirements 2740

Table Graphical representation Textual representation

Table 47 1 2

Table 48 1 or 2 or 3 or (4 and (4a or 4b))
 or (7 and (7a or 7b or 7c or 7d))

5 or 6

Table 49 1 or 2l or 2f 1 or 3s or 3i

Table 50 1 or 2 or 4 3

Table 51 1 or 2 1 or 2

Table 52 1 and (2a or 2b or 2c) and 3 and 4 Same (textual equivalent)

Table 53 (1 or 2) and (3 or 4) and (5 or 6) and
(7 or 8) and (9 or 10) and (11 or 12)

Not required

6.7 Configuration elements 2741

6.7.1 General 2742
As described in 4.1, a configuration consists of resources, tasks (which are defined within re-2743
sources), global variables, access paths and instance specific initializations. Each of these 2744
elements is defined in detail in this subclause. 2745

A graphic example of a simple configuration is shown in Figure 35 a). Skeleton declarations for 2746
the corresponding function blocks and programs are given in Figure 35 b). This figure serves 2747
as a reference point for the examples of configuration elements given in the remainder of sub-2748
clause 6.7. 2749

— 126 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

a) Graphical representation

CONFIGURATION CELL_1
RESOURCE STATION_1

F G

B

RESOURCE STATION_2

C D

GLOBAL AND DIRECTLY REPRESENTED VARIABLES
AND INSTANCE-SPECIFIC INITIALIZATIONS

ACCESS PATHS

TASK
SLOW_1

P1 P2 P1 P4

x1 y1
y2

FB2

FB1 FB2

z1

x2

FAST_1SLOW_1

BAKER ABLE CHARLIE DOG GAMMA ALPHA BETA

x1

x2

PER_2

F H

HOUT1
INT_2

b1
b2

d1
PER_2COUNT

S1_COUNT
THETA

C2
C3

TASK TASK
PER_2

TASK
INT_2

%IX1.1

A y1

FB1

y2
SLOW_1

out1

w z2 %QW5

ZETA

%QB25

c1

OMEGA

FAST_1

— 127 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

FUNCTION_BLOCK A
 VAR_OUTPUT
 y1 : UINT ;
 y2 : BYTE ;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK B
 VAR_INPUT
 b1 : UINT ;
 b2 : BYTE ;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK C
 VAR_OUTPUT
 c1 : BOOL ;
 END_VAR
 VAR
 C2 AT %Q*: BYTE;
 C3: INT;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK D
 VAR_INPUT
 d1 : BOOL ;
 END_VAR
 VAR_OUTPUT
 y2 : INT ;
 END_VAR
END_FUNCTION_BLOCK

PROGRAM F
 VAR_INPUT
 x1 : BOOL ;
 x2 : UINT ;
 END_VAR
 VAR_OUTPUT
 y1 : BYTE ;
 END_VAR
 VAR
 COUNT : INT ;
 TIME1 : TON ;
 END_VAR
END_PROGRAM

PROGRAM G
 VAR_OUTPUT
 out1 : UINT ;
 END_VAR
 VAR_EXTERNAL
 z1 : BYTE ;
 END_VAR
 VAR
 FB1 : A ;
 FB2 : B ;
 END_VAR

 FB1(...) ;
 out1 := FB1.y1 ;
 z1 := FB1.y2 ;
 FB2(b1 := FB1.y1, b2 := FB1.y2) ;
END_PROGRAM

PROGRAM H
 VAR_OUTPUT
 HOUT1 : INT ;
 END_VAR
 VAR
 FB1 : C ;
 FB2 : D ;
 END_VAR

 FB1(...) ;
 FB2(...) ;
 HOUT1 := FB2.y2 ;
END_PROGRAM

b) Skeleton function block and program declarations

Figure 35 - Configuration example 2750

6.7.2 Configurations, resources, and access paths 2751
Table 57 enumerates the language features for declaration of configurations, resources, global 2752
variables, access paths and instance specific initializations. Partial enumeration of TASK decla-2753
ration features is also given; additional information on tasks is provided in 6.7.3. The formal 2754
syntax for these features is given in B.2.7. Figure 35 provides examples of these features, cor-2755
responding to the example configuration shown in Figure 35 a) and the supporting declarations 2756
in Figure 35 b). 2757

— 128 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

The ON qualifier in the RESOURCE...ON...END_RESOURCE construction is used to specify the 2758
type of “processing function” and its “man-machine interface” and “sensor and actuator inter-2759
face” functions upon which the resource and its associated programs and tasks are to be im-2760
plemented. The manufacturer shall supply an implementation-dependent resource library of 2761
such functions, as illustrated in Figure 3. Associated with each element in this library shall be 2762
an identifier (the resource type name) for use in resource declaration. 2763

NOTE The RESOURCE...ON...END_RESOURCE construction is not required in a configuration with a single re-2764
source. See the production single_resource_declaration in B.2.7 for the syntax to be used in this case. 2765

The scope of a VAR_GLOBAL declaration shall be limited to the configuration or resource in 2766
which it is declared, with the exception that an access path can be declared to a global variable 2767
in a resource using feature 10d in Table 57. 2768

The VAR_ACCESS...END_VAR construction provides a means of specifying variable names 2769
which can be used for remote access by some of the communication services specified in IEC 2770
61131-5. An access path associates each such variable name with a global variable, a directly 2771
represented variable as defined in 6.4.1, or any input, output, or internal variable of a program 2772
or function block. 2773

The association shall be accomplished by qualifying the name of the variable with the complete 2774
hierarchical concatenation of instance names, beginning with the name of the resource (if any), 2775
followed by the name of the program instance (if any), followed by the name(s) of the function 2776
block instance(s) (if any). The name of the variable is concatenated at the end of the chain. All 2777
names in the concatenation shall be separated by dots. If such a variable is a multi-element 2778
variable (structure or array), an access path can also be specified to an element of the vari-2779
able. 2780

It shall not be possible to define access paths to variables that are declared in VAR_TEMP, 2781
VAR_EXTERNAL or VAR_IN_OUT declarations. 2782

The direction of the access path can be specified as READ_WRITE or READ_ONLY, indicating 2783
that the communication services can both read and modify the value of the variable in the first 2784
case, or read but not modify the value in the second case. If no direction is specified, the de-2785
fault direction is READ_ONLY. 2786

Access to variables that are declared CONSTANT or to function block inputs that are externally 2787
connected to other variables shall be READ_ONLY. 2788

NOTE The effect of using READ_WRITE access to function block output variables is implementation-dependent. 2789

The VAR_CONFIG...END_VAR construction provides a means to assign instance specific loca-2790
tions to symbolically represented variables, which are nominated for the respective purpose by 2791
using the asterisk notation described in 6.4.1, or to assign instance specific initial values to 2792
symbolically represented variables, or both. 2793

The assignment shall be accomplished by qualifying the name of the object to be located or 2794
initialized with the complete hierarchical concatenation of instance names, beginning with the 2795
name of the resource (if any), followed by the name of the program instance, followed by the 2796
name(s) of the function block instance(s) (if any). The name of the object to be located or ini-2797
tialized is concatenated at the end of the chain. All names in the concatenation shall be sepa-2798
rated by dots. The location assignment or the initial value assignment follows the syntax and 2799
the semantics described in 6.4. 2800

Instance specific initial values provided by the VAR_CONFIG...END_VAR construction always 2801
override type specific initial values. It shall not be possible to define instance specific initializa-2802
tions to variables which are declared in VAR_TEMP, VAR_EXTERNAL, VAR CONSTANT or 2803
VAR_IN_OUT declarations. 2804

— 129 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 57 - Configuration and resource declaration features 2805

No. Description

1 CONFIGURATION...END_CONFIGURATION construction

2 VAR_GLOBAL...END_VAR construction within CONFIGURATION

3 RESOURCE...ON...END_RESOURCE construction

4 VAR_GLOBAL...END_VAR construction within RESOURCE

5a Periodic TASK construction (see NOTE 1)

5b Non-periodic TASK construction (see NOTE 1)

6a WITH construction for PROGRAM to TASK association (see NOTE 1)

6b WITH construction for Function Block to TASK association (see NOTE 1)

6c PROGRAM declaration with no TASK association (see NOTE 1)

7 Declaration of directly represented variables in VAR_GLOBAL (see NOTE 2)

8a Connection of directly represented variables to PROGRAM inputs

8b Connection of GLOBAL variables to PROGRAM inputs

9a Connection of PROGRAM outputs to directly represented variables

9b Connection of PROGRAM outputs to GLOBAL variables

10a VAR_ACCESS...END_VAR construction

10b Access paths to directly represented variables

10c Access paths to PROGRAM inputs

10d Access paths to GLOBAL variables in RESOURCEs

10e Access paths to GLOBAL variables in CONFIGURATIONs

10f Access paths to PROGRAM outputs

10g Access paths to PROGRAM internal variables

10h Access paths to function block inputs

10i Access paths to function block outputs

11 VAR_CONFIG...END_VAR constructiona

12a VAR_GLOBAL CONSTANT in RESOURCE declarations

12b VAR_GLOBAL CONSTANT in CONFIGURATION declarations

13a VAR_EXTERNAL in RESOURCE declarations

13b VAR_EXTERNAL CONSTANT in RESOURCE declarations

NOTE 1 See 6.7.3 for further descriptions of TASK features.
NOTE 2 See 6.4.2 for further descriptions of related features.
a This feature shall be supported if feature 10 in Table 15 is supported.

 2806
1 CONFIGURATION CELL_1

2 VAR_GLOBAL w: UINT; END_VAR

3 RESOURCE STATION_1 ON PROCESSOR_TYPE_1

4 VAR_GLOBAL z1: BYTE; END_VAR

5a TASK SLOW_1(INTERVAL := t#20ms, PRIORITY := 2) ;

5a TASK FAST_1(INTERVAL := t#10ms, PRIORITY := 1) ;

6a
8a

 PROGRAM P1 WITH SLOW_1 :
 F(x1 := %IX1.1) ;

9b PROGRAM P2 : G(OUT1 => w,

6b FB1 WITH SLOW_1,

6b FB2 WITH FAST_1) ;

— 130 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

3 END_RESOURCE

3 RESOURCE STATION_2 ON PROCESSOR_TYPE_2

4 VAR_GLOBAL z2 : BOOL ;

7 AT %QW5 : INT ;

4 END_VAR

5a TASK PER_2(INTERVAL := t#50ms, PRIORITY := 2) ;

5b TASK INT_2(SINGLE := z2, PRIORITY := 1) ;

6a
8b

 PROGRAM P1 WITH PER_2 :
 F(x1 := z2, x2 := w) ;

6a
9a

 PROGRAM P4 WITH INT_2 :
 H(HOUT1 => %QW5,

6b FB1 WITH PER_2);

3 END_RESOURCE

10a VAR_ACCESS

10b ABLE : STATION_1.%IX1.1 : BOOL READ_ONLY ;

10c BAKER : STATION_1.P1.x2 : UINT READ_WRITE ;

10d CHARLIE : STATION_1.z1 : BYTE ;

10e DOG : w : UINT READ_ONLY ;

10f ALPHA : STATION_2.P1.y1 : BYTE READ_ONLY ;

10f BETA : STATION_2.P4.HOUT1 : INT READ_ONLY ;

10d GAMMA : STATION_2.z2 : BOOL READ_WRITE ;

10g S1_COUNT : STATION_1.P1.COUNT : INT;

10h THETA : STATION_2.P4.FB2.d1 : BOOL READ_WRITE;

10i ZETA : STATION_2.P4.FB1.c1 : BOOL READ_ONLY;

10k OMEGA : STATION_2.P4.FB1.C3 : INT READ_WRITE;

10a END_VAR

11 VAR_CONFIG
 STATION_1.P1.COUNT : INT := 1;
 STATION_2.P1.COUNT : INT := 100;
 STATION_1.P1.TIME1 : TON := (PT := T#2.5s);
 STATION_2.P1.TIME1 : TON := (PT := T#4.5s);
 STATION_2.P4.FB1.C2 AT %QB25 : BYTE;
 END_VAR

1 END_CONFIGURATION

NOTE 1 The numbers in the left-hand margin refer to the feature numbers in Table 57.

NOTE 2 Graphical and semigraphic representation of these features is allowed but is beyond the scope of this
part of IEC 61131.

NOTE 3 It is an error if the data type declared for a variable in a VAR_ACCESS statement is not the same as
the data type declared for the variable elsewhere, e.g., if variable BAKER is declared of type WORD in the above
examples.

Figure 36 - CONFIGURATION and RESOURCE declaration features (Example) 2807

6.7.3 Tasks 2808
For the purposes of this part of IEC 61131, a task is defined as an execution control element 2809
which is capable of calling, either on a periodic basis or upon the occurrence of the rising edge 2810
of a specified Boolean variable, the execution of a set of program organization units, which can 2811
include programs and function blocks whose instances are specified in the declaration of pro-2812
grams. 2813

The maximum number of tasks per resource and task interval resolution are implementation 2814
dependencies. 2815

— 131 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Tasks and their association with program organization units can be represented graphically or 2816
textually using the WITH construction, as shown in Table 58, as part of resources within con-2817
figurations. A task is implicitly enabled or disabled by its associated resource according to the 2818
mechanisms defined in 4.1. The control of program organization units by enabled tasks shall 2819
conform to the following rules: 2820

a) The associated program organization units shall be scheduled for execution upon each ris-2821
ing edge of the SINGLE input of the task. 2822

b) If the INTERVAL input is non-zero, the associated program organization units shall be 2823
scheduled for execution periodically at the specified interval as long as the SINGLE input 2824
stands at zero (0). If the INTERVAL input is zero (the default value), no periodic scheduling 2825
of the associated program organization units shall occur. 2826

c) The PRIORITY input of a task establishes the scheduling priority of the associated program 2827
organization units, with zero (0) being highest priority and successively lower priorities hav-2828
ing successively higher numeric values. As shown in Table 58, the priority of a program or-2829
ganization unit (that is, the priority of its associated task) can be used for pre-emptive or 2830
non-pre-emptive scheduling. 2831

• In non-pre-emptive scheduling, processing power becomes available on a resource when 2832
execution of a program organization unit or operating system function is complete. When 2833
processing power is available, the program organization unit with highest scheduled pri-2834
ority shall begin execution. If more than one program organization unit is waiting at the 2835
highest scheduled priority, then the program organization unit with the longest waiting 2836
time at the highest scheduled priority shall be executed. 2837

• In pre-emptive scheduling, when a program organization unit is scheduled, it can inter-2838
rupt the execution of a program organization unit of lower priority on the same resource, 2839
that is, the execution of the lower-priority unit can be suspended until the execution of 2840
the higher-priority unit is completed. A program organization unit shall not interrupt the 2841
execution of another unit of the same or higher priority. 2842
NOTE Depending on schedule priorities, a program organization unit might not begin execution at the in-2843
stant it is scheduled. However, in the examples shown in Table 58, all program organization units meet their 2844
deadlines, that is, they all complete execution before being scheduled for re-execution. The manufacturer 2845
shall provide information to enable the user to determine whether all deadlines will be met in a proposed con-2846
figuration. 2847

d) A program with no task association shall have the lowest system priority. Any such program 2848
shall be scheduled for execution upon “starting” of its resource, as defined in 4.1, and shall 2849
be re-scheduled for execution as soon as its execution terminates. 2850

e) When a function block instance is associated with a task, its execution shall be under the 2851
exclusive control of the task, independent of the rules of evaluation of the program organiza-2852
tion unit in which the task-associated function block instance is declared. 2853

f) Execution of a function block instance which is not directly associated with a task shall fol-2854
low the normal rules for the order of evaluation of language elements for the program or-2855
ganization unit (which can itself be under the control of a task) in which the function block 2856
instance is declared. 2857

g) The execution of function blocks within a program shall be synchronized to ensure that data 2858
concurrency is achieved according to the following rules: 2859

• If a function block receives more than one input from another function block, then when 2860
the former is executed, all inputs from the latter shall represent the results of the same 2861
evaluation. 2862
EXAMPLE 1 2863

In the example represented by figure 21 a), when Y2 is evaluated, the inputs Y2.A and Y2.B shall repre-2864
sent the outputs Y1.C and Y1.D from the same (not two different) evaluations of Y1. 2865

• If two or more function blocks receive inputs from the same function block, and if the 2866
“destination” blocks are all explicitly or implicitly associated with the same task, then the 2867
inputs to all such “destination” blocks at the time of their evaluation shall represent the 2868
results of the same evaluation of the “source” block. 2869
EXAMPLE 2 2870

In the example represented by Figure 37 b) and c), when Y2 and Y3 are evaluated in the normal course of 2871

— 132 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

evaluating program P1, the inputs Y2.A and Y2.B shall be the results of the same evaluation of Y1 as the 2872
inputs Y3.A and Y3.B. 2873

Provision shall be made for storage of the outputs of functions or function blocks which have 2874
explicit task associations, or which are used as inputs to program organization units which 2875
have explicit task associations, as necessary to satisfy the rules given above. 2876

It shall be an error in the sense of 5.1 if a task fails to be scheduled or to meet its execution 2877
deadline because of excessive resource requirements or other task scheduling conflicts. 2878

Table 58 - Task features 2879

No. Description/Examples

1a Textual declaration of periodic TASK (feature 5a of Table 57)

1b Textual declaration of non-periodic TASK (feature 5b of Table 57)

Graphical representation of TASKs (general form)

2a Graphical representation of periodic TASKs

2b Graphical representation of non-periodic TASK

3a Textual association with PROGRAMs (feature 6a of Table 57)

3b Textual association with function blocks (feature 6b of Table 57)

4a Graphical association with PROGRAMs

4b Graphical association with function blocks within PROGRAMs

— 133 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Description/Examples

5a Non-preemptive scheduling

 EXAMPLE 1
- RESOURCE STATION_1 as configured in Figure 36
- Execution times: P1 = 2 ms; P2 = 8 ms
- P2.FB1 = P2.FB2 = 2 ms (see NOTE 3)
- STATION_1 starts at t = 0

 SCHEDULE (repeats every 40 ms)

 t(ms) Executing Waiting

 0 P2.FB2@1 P1@2, P2.FB1@2, P2

 2 P1@2 P2.FB1@2, P2

 4 P2.FB1@2 P2

 6 P2

 10 P2 P2.FB2@1

 14 P2.FB2@1 P2

 16 P2 (P2 restarts)

 20 P2 P2.FB2@1, P1@2, P2.FB1@2

 24 P2.FB2@1 P1@2, P2.FB1@2, P2

 26 P1@2 P2.FB1@2, P2

 28 P2.FB1@2 P2

 30 P2.FB2@1 P2

 32 P2

 40 P2.FB2@1 P1@2, P2.FB1@2, P2

5a Non-preemptive scheduling

 EXAMPLE 2
- RESOURCE STATION_2 as configured in Figure 36
- Execution times: P1 = 30 ms, P4 = 5 ms, P4.FB1 = 10 ms (see OTE 4)
- INT_2 is triggered at t = 25, 50, 90,... ms
- STATION_2 starts at t = 0

 SCHEDULE

 t(ms) Executing Waiting

 0 P1@2 P4.FB1@2

 25 P1@2 P4.FB1@2, P4@1

 30 P4@1 P4.FB1@2

 35 P4.FB1@2

 50 P4@1 P1@2, P4.FB1@2

 55 P1@2 P4.FB1@2

 85 P4.FB1@2

— 134 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Description/Examples

 90 P4.FB1@2 P4@1

 95 P4@1

 100 P1@2 P4.FB1@2

5b Preemptive scheduling

 EXAMPLE 3
- RESOURCE STATION_1 as configured in Figure 36
- Execution times: P1 = 2 ms; P2 = 8 ms; P2.FB1 = P2.FB2 = 2 ms (see NOTE 3)
- STATION_1 starts at t = 0

 SCHEDULE

 t(ms) Executing Waiting

 0 P2.FB2@1 P1@2, P2.FB1@2, P2

 2 P1@2 P2.FB1@2, P2

 4 P2.FB1@2 P2

 6 P2

 10 P2.FB2@1 P2

 12 P2

 16 P2 (P2 restarts)

 20 P2.FB2@1 P1@2, P2.FB1@2, P2

5b Preemptive scheduling

 EXAMPLE 4
- RESOURCE STATION_2 as configured in Figure 36
- Execution times: P1 = 30 ms, P4 = 5 ms, P4.FB1 = 10 ms (NOTE 4)
- INT_2 is triggered at t = 25, 50, 90,... ms
- STATION_2 starts at t = 0

 SCHEDULE

 t(ms) Executing Waiting

 0 P1@2 P4.FB1@2

 25 P4@1 P1@2, P4.FB1@2

 30 P1@2 P4.FB1@2

 35 P4.FB1@2

 50 P4@1 P1@2, P4.FB1@2

 55 P1@2 P4.FB1@2

 85 P4.FB1@2

 90 P4@1 P4.FB1@2

 95 P4.FB1@2

 100 P1@2 P4.FB1@2

NOTE 1 Details of RESOURCE and PROGRAM declarations are not shown; see 6.7.2 and 6.7.3.

NOTE 2 The notation X@Y indicates that program organization unit X is scheduled or executing at priority Y.

NOTE 3 The execution times of P2.FB1 and P2.FB2 are not included in the execution time of P2.

NOTE 4 The execution time of P4.FB1 is not included in the execution time of P4.

 2880

— 135 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

RESOURCE R1

PROGRAM X

a) Function blocks with explicit task associations

RESOURCE R1

PROGRAM X

b) Function blocks with implicit task associations

 2881

— 136 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

RESOURCE R1

PROGRAM X

c) Explicit task associations equivalent to b)

NOTE The graphical representations in these figures are illustrative only and are not normative. 2882
Figure 37 - Examples of task associations to function block instances 2883

6.8 Namespaces 2884

6.8.1 General 2885
For the purposes of programmable controller programming languages, a namespace is a lan-2886
guage element combining other language elements to a combined entity. 2887

A name of a language element declared within a namespace may also be used within other 2888
namespaces or outside of any namespace. 2889

With namespaces a library concept can be implemented as well as a module concept. Name-2890
spaces can be used to avoid identifier ambiguities. 2891

A typical application of namespace is in the context of the object oriented programming fea-2892
tures. 2893

If the feature namespace is provided in a implementation this shall be defined in Table 46. 2894

6.8.2 Declaration 2895

A namespace declaration starts with the keyword NAMESPACE followed by the name of the na-2896
mespace and ends with the keyword END_NAMESPACE. A namespace contains a sequence of 2897
access areas, each starting with one of the following keyword combinations: 2898

 INTERNAL ACCESS for an access only within the namespace itself or 2899

 PUBLIC ACCESS for an access also from outside the namespace 2900

and ending with the keyword END_ACCESS. 2901

An access area defines the access to the language elements it contains. An access area may 2902
contain the following language elements: 2903

 Functions 2904

 Function blocks 2905

— 137 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 Interfaces 2906

 User defined data types 2907

 Lists of global variables 2908

 Namespaces 2909

Methods of function blocks within an INTERNAL access area shall not have the method access 2910
specifier PUBLIC as defined in 6.5.4.2.4 2911

EXAMPLE 2912
 Namespaces containing some function blocks. 2913

NAMESPACE Standard

PUBLIC ACCESS

 NAMESPACE Timers

 INTERNAL ACCESS

 FUNCTION TimeTick: DWORD

 (*...declaration and operations deleted...*)

 END_FUNCTION

 END_ACCESS

 PUBLIC ACCESS

 FUNCTION_BLOCK TON

 (*... declaration and operations deleted...*)

 END_FUNCTION_BLOCK

 FUNCTION_BLOCK TOF

 (*... declaration and operations deleted...*)

 END_FUNCTION_BLOCK

 END_ACCESS

 END_NAMESPACE (*Timers*)

END_ACCESS

END_NAMESPACE (*Standard*)

6.8.3 Usage 2914

Elements of a namespace within a PUBLIC ACCESS can be accessed from outside the name-2915
space with the name of the namespace and a following “.”. This is not necessary from within 2916
the namespace but permitted. 2917

Elements declared within an INTERNAL ACCESS can not be accessed from outside the name-2918
space. 2919

Elements in nested namespaces can only be accessed by naming all parent namespaces as 2920
shown in the example. 2921

— 138 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

EXAMPLE 2922
Usage of a Timer out of the Standard.Timers namespace 2923

FUNCTION_BLOCK Uses_Timer

VAR

Ton1 : Standard . Timers . Ton;
 (* starts timer with rising edge, resets timer with falling edge *)

 bTest: BOOL;

END_VAR

Ton1(In := bTest, PT := t#5s);

END_FUNCTION_BLOCK

7 Textual languages 2924

7.1 Common elements 2925

The textual languages defined in this standard are IL (Instruction List) and ST (Structured 2926
Text). The sequential function chart (SFC) elements defined in 5 can be used in conjunction 2927
with either of these languages. 2928

Subclause 7.2 defines the semantics of the IL language, whose syntax is given in B.3. Sub-2929
clause 7.3 defines the semantics of the ST language, whose syntax is given in B.4. 2930

The textual elements specified in clause 6 shall be common to the textual languages (IL and 2931
ST) defined in this clause. In particular, the following program structuring elements shall be 2932
common to textual languages: 2933

TYPE...END_TYPE

VAR...END_VAR

VAR_INPUT...END_VAR

VAR_OUTPUT...END_VAR

VAR_IN_OUT...END_VAR

VAR_EXTERNAL...END_VAR

VAR_TEMP...END_VAR

VAR_ACCESS...END_VAR

VAR_GLOBAL...END_VAR

VAR_CONFIG...END_VAR

FUNCTION... END_FUNCTION

FUNCTION_BLOCK...END_FUNCTION_BLOCK

PROGRAM...END_PROGRAM

STEP...END_STEP

TRANSITION...END_TRANSITION

ACTION...END_ACTION

7.2 Instruction list (IL) 2934

7.2.1 Instructions 2935
As illustrated in Figure 38, an instruction list is composed of a sequence of instructions. Each 2936
instruction shall begin on a new line and shall contain an operator with optional modifiers, and, 2937
if necessary for the particular operation, one or more operands separated by commas. Oper-2938
ands can be any of the data representations defined in 6.2 for literals, in 6.3 for enumerated 2939
values, and in 6.4 for variables. 2940

The instruction can be preceded by an identifying label followed by a colon (:). Empty lines 2941
can be inserted between instructions. 2942

— 139 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 LABEL OPERATOR OPERAND COMMENT

 START: LD %IX1 (* PUSH BUTTON *)

 ANDN %MX5 (* NOT INHIBITED *)

 ST %QX2 (* FAN ON *)

Figure 38 - Instruction fields (Example) 2943

7.2.2 Operators, modifiers and operands 2944

Standard operators with their allowed modifiers and operands shall be as listed in Table 59. 2945
The typing of operators shall conform to the conventions of 6.5.2.5. 2946

Unless otherwise defined in Table 59, the semantics of the operators shall be 2947

 result := result OP operand 2948

That is, the value of the expression being evaluated is replaced by its current value operated 2949
upon by the operator with respect to the operand. 2950

EXAMPLE 1 The instruction AND %IX1 is interpreted as result := result AND %IX1 2951
The comparison operators shall be interpreted with the current result to the left of the compari-2952
son and the operand to the right, with a Boolean result. 2953

EXAMPLE 2 The instruction GT %IW10 will have the Boolean result 1 if the current result is greater than the 2954
 value of Input Word 10, and the Boolean result 0 otherwise. 2955

The modifier “N” indicates bitwise Boolean negation (one's complement) of the operand. 2956

EXAMPLE 3 The instruction ANDN %IX2 is interpreted as result := result AND NOT %IX2. 2957
It shall be an error in the sense of 5.1 if the current result and operand are not of same data 2958
type, or if the result of a numerical operation exceeds the range of values for its data type. 2959

The left parenthesis modifier “(” indicates that evaluation of the operator shall be deferred until 2960
a right parenthesis operator “)” is encountered. In Table 59, two equivalent forms of a paren-2961
thesized sequence of instructions are shown. Both features in Table 59 shall be interpreted as 2962

result := result AND (%IX1 OR %IX2) 2963

Table 59 - Parenthesized expression features for IL language 2964

No. DESCRIPTION/EXAMPLE

Parenthesized expression beginning with explicit operator: 1

AND(
LD %IX1 (NOTE 1)
OR %IX2
)

Parenthesized expression (short form): 2

AND(%IX1
OR %IX2
)

NOTE In feature 1 the LD operator may be modified or the LD operation may be replaced by an-
other operation or function call respectively.

 2965
The modifier “C” indicates that the associated instruction shall be performed only if the value of 2966
the currently evaluated result is Boolean 1 (or Boolean 0 if the operator is combined with the 2967
“N” modifier). 2968

— 140 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 60 - Instruction list operators 2969

No. OPERATORa MODIFIERS
 (see NOTE)

SEMANTICS

1 LD N Set current result equal to operand

2 ST N Store current result to operand location

3 Se Set operand to 1 if current result is Boolean 1

 Re Reset operand to 0 if current result is Boolean 1

4 AND N, (Logical AND

5 & N, (Logical AND

6 OR N, (Logical OR

7 XOR N, (Logical exclusive OR

7a NOTd Logical negation (one's complement)

8 ADD (Addition

9 SUB (Subtraction

10 MUL (Multiplication

11 DIV (Division

11a MOD (Modulo-division

12 GT (Comparison: >

13 GE (Comparison: >=

14 EQ (Comparison: =

15 NE (Comparison: <>

16 LE (Comparison: <=

17 LT (Comparison: <

18 JMPb C, N Jump to label

19 CALc C, N Call function block (see Table 61)

20 RETf C, N Return from called function, function block or program

21) Evaluate deferred operation

NOTE See preceding text for explanation of modifiers and evaluation of expressions.

a Unless otherwise noted, these operators shall be either overloaded or typed as defined in
 6.5.2.

b The operand of a JMP instruction shall be the label of an instruction to which execution is to
be transferred. When a JMP instruction is contained in an ACTION... END_ACTION con-
struct, the operand shall be a label within the same construct.

c The operand of this instruction shall be the name of a function block instance to be called.
d The result of this operation shall be the bitwise Boolean negation (one's complement) of the

current result.
e The type of the operand of this instruction shall be BOOL.
f This instruction does not have an operand.

7.2.3 Functions and function blocks 2970

Functions as defined in 6.5.2 shall be called by placing the function name in the operator field. 2971
As shown in features 4 and 5 in Table 61 successful execution of a RET instruction or upon 2972
reaching the physical end of the function shall become the “current result” described in 7.2.2. 2973

The argument list of functions (feature 4 in Table 61) is equivalent to feature 1 in Table 24. The 2974
rules and features defined in 6.5.2.2 and in Table 24 for function calls apply. 2975

— 141 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

A non-formal input list of functions (feature 5 in Table 61) is equivalent to feature 2 in Table 24. 2976
The rules and features defined in 6.5.2.2 and Table 24 for function calls apply. In contrast to 2977
the examples given in Table 24 for ST language, the first argument is not contained in the non-2978
formal input list in IL, but the current result shall be used as the first argument of the function. 2979
Additional arguments (starting with the 2nd), if required, shall be given in the operand field, 2980
separated by commas, in the order of their declaration. 2981

Function blocks as defined in 6.5.3 can be called conditionally and unconditionally via the CAL 2982
(Call) operator listed in Table 60. As shown in features 1a, 1b, 2 and 3 of Table 57, this call 2983
can take one of four forms. 2984

A formal argument list of a function block call (feature 1a in Table 61) is equivalent to feature 2985
1 in Table 24. A non-formal argument list of a function block call (feature 1b in Table 61) is 2986
equivalent to feature 2 in Table 24. The rules and features defined in 6.5.2.2 and Table 24 for 2987
function calls applycorrespondingly, by replacing each occurrence of the term ‘function’ by the 2988
term ‘function block’ in these rules. All assignments in an argument list of a conditional function 2989
block call shall only be performed together with the call, if the condition is true. 2990

Table 61 - Function block call and Function call features for IL language 2991

No. DESCRIPTION/EXAMPLE (NOTE 1)

CAL of function block with non-formal argument list: 1a

CAL C10(%IX10, FALSE, A, OUT, B)

CAL CMD_TMR(%IX5, T#300ms, OUT, ELAPSED)

CAL of function block with formal argument list: 1b

CAL C10(
 CU := %IX10,
 R := FALSE,
 PV := A,
 Q => OUT
 CV => B)

 CAL CMD_TMR(
 IN := %IX5,
 PT := T#300ms,
 Q => OUT,
 ET => ELAPSED,
 ENO => ERR)

(* alternate input names *)

CAL C10(
 CU := %IX10,
 RESET := FALSE,
 PV := A,
 Q => OUT
 CV => B)

 CAL CMD_TMR(
 IN := %IX5,
 PT := T#300ms,
 Q => OUT,
 ET => ELAPSED,
 ENO => ERR)

2 CAL of function block with load/store of arguments (NOTE 2)

 LD A
ADD 5
ST C10. PV
LD %IX10
ST C10. CU
CAL C10

Function call with formal argument list: 3

LIMIT(
 EN := COND,
 IN := B,
 MN := 1,
 MX := 5,
 ENO => TEMPL
)
ST A

Function call with non-formal argument list: 4

LD 1
LIMIT B, 5
ST A

— 142 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. DESCRIPTION/EXAMPLE (NOTE 1)

NOTE 1 A declaration such as
VAR
 C10 : CTU;
 CMD_TMR : TON;
 A, B : INT;
 ELAPSED : TIME;
 OUT, ERR, TEMPL, COND : BOOL;
END_VAR
is assumed in the above examples.

NOTE 2 This usage is an exception to the rule given in 6.5.3.2 that “The assignment of a value
to the inputs of a function block is permitted only as part of the call of the function block.”

 2992
The input operators shown in Table 62 can be used in conjunction with feature 3 in Table 61. 2993
This method of call is equivalent to a CAL with an argument list, which contains only one vari-2994
able with the name of the input operator. Arguments, which are not supplied, are taken from 2995
the last assignment or, if not present, from initialization. This feature supports problem situa-2996
tions, where events are predictable and therefore only one variable can change from one call 2997
to the next. 2998

EXAMPLE 1 2999
Together with the declaration 3000
 VAR C10: CTU; END_VAR 3001
the instruction sequence 3002
 LD 15 3003
 PV C10 3004
gives the same result as 3005
 CAL C10(PV:=15) 3006
The missing inputs R and CU have values previously assigned to them. Since the CU input detects a rising 3007
edge, only the PV input value will be set by this call; counting cannot happen because an unsupplied argu-3008
ment cannot change. In contrast to this, the sequence 3009
 LD %IX10 3010
 CU C10 3011
results in counting at maximum in every second call, depending on the change rate of the input %IX10. Every 3012
call uses the previously set values for PV and R. 3013

EXAMPLE 2 3014
With bistable function blocks, taking a declaration 3015
 VAR FORWARD: SR; END_VAR 3016
this results into an implicit conditional behavior. The sequence 3017
 LD FALSE 3018
 S1 FORWARD 3019
does not change the state of the bistable FORWARD. A following sequence 3020
 LD TRUE 3021
 R FORWARD 3022
resets the bistable. 3023

Table 62 - Standard function block input operators for IL language 3024

No. Operators FB Type Reference

4 S1,R SR 6.5.3.5.2

5 S,R1 RS 6.5.3.5.2

6 CLK R_TRIG xx

8 CU,R,PV CTU 6.5.3.5.4

9 CD,PV CTD 6.5.3.5.4 (NOTE 1)

10 CU,CD,R,PV CTUD 6.5.3.5.4 (NOTE 1)

11 IN,PT TP 6.5.3.5.5

12 IN,PT TON 6.5.3.5.5

13 IN,PT TOF 6.5.3.5.5

— 143 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

NOTE 1 LD is not necessary as a Standard Function Block input operator, because the LD functionality is
included in PV.

NOTE 2 The feature numbering in this table is such as to maintain consistency with the first edition of IEC
61131-3.

 3025

Arguments, which are not supplied, are taken from the last assignment or, if not present, from 3026
initialization. This feature supports problem situations, where events are predictable and there-3027
fore only one variable can change from one call to the next. 3028

7.3 Structured Text (ST) 3029

7.3.1 Expressions 3030

In the ST language, the end of a textual line shall be treated the same as a space (SP) charac-3031
ter, as defined in 6.4.2. 3032

An expression is a construct which, when evaluated, yields a value corresponding to one of the 3033
data types defined in 6.3. The maximum allowed length of expressions is an implementation 3034
dependency.. 3035

Expressions are composed of operators and operands. An operand shall be a literal as defined 3036
in 6.2, an enumerated value as defined in 6.3.3, a variable as defined in 6.4, a function call as 3037
defined in 6.5.2, or another expression. 3038

The operators of the ST language are summarized in Table 63. The evaluation of an expres-3039
sion consists of applying the operators to the operands in a sequence defined by the operator 3040
precedence shown in Table 63. The operator with highest precedence in an expression shall be 3041
applied first, followed by the operator of next lower precedence, etc., until evaluation is com-3042
plete. Operators of equal precedence shall be applied as written in the expression from left to 3043
right. 3044

EXAMPLE 1 3045
If A, B, C, and D are of type INT with values 1, 2, 3, and 4, respectively, then 3046
 A+B-C*ABS(D) 3047
shall evaluate to -9, and 3048
 (A+B-C)*ABS(D) 3049
shall evaluate to 0. 3050

When an operator has two operands, the leftmost operand shall be evaluated first. 3051

EXAMPLE 2 3052
In the expression 3053
 SIN(A)*COS(B) 3054
the expression SIN(A) shall be evaluated first, followed by COS(B), followed by evaluation of the product. 3055

The following conditions in the execution of operators shall be treated as errors in the sense of 3056
 5.1: 3057

1. An attempt is made to divide by zero. 3058
2. Operands are not of the correct data type for the operation. 3059
3. The result of a numerical operation exceeds the range of values for its data type. 3060
Boolean expressions may be evaluated only to the extent necessary to determine the resultant 3061
value. For instance, if A<=B, then only the expression (A>B) would be evaluated to determine 3062
that the value of the expression 3063
 (A>B) & (C<D) 3064
is Boolean zero. 3065

Functions shall be called as elements of expressions consisting of the function name followed 3066
by a parenthesized list of arguments, as defined in 6.5.2. 3067

When an operator in an expression can be represented as one of the overloaded functions, 3068
conversion of operands and results shall follow the rule and examples given in 6.5.2.5. 3069

— 144 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table 63 - Operators of the ST language 3070

No. Operationa Symbol Precedence

1 Parenthesization (expression) HIGHEST

2 Function evaluation identifier(argument list)
 EXAMPLES LN(A), MAX(X,Y), etc.

4 Negation -
5 Complement NOT
3 Exponentiationb **
6 Multiply *
7 Divide /
8 Modulo MOD
9 Add +

10 Subtract -
11 Comparison < , > , <= , >=
12 Equality =

13 Inequality <>
14 Boolean AND &
15 Boolean AND AND
16 Boolean Exclusive OR XOR
17 Boolean OR OR LOWEST

NOTE The feature numbering in this table is such as to maintain consistency with the first edition of IEC 61131-3.

a The same restrictions apply to the operands of these operators as to the inputs of the corresponding functions
defined in 6.5.2.6.

b The result of evaluating the expression A**B shall be the same as the result of evaluating the function
EXPT(A,B) as defined in Table 26.

7.3.2 Statements 3071

7.3.2.1 General 3072

The statements of the ST language are summarized in Table 64. Statements shall be termi-3073
nated by semicolons as specified in the syntax of B.4. The maximum allowed length of state-3074
ments is an implementation dependency. 3075

Table 64 - ST language statements 3076

No. Statement type/Reference Examples

1 Assignment A := B; CV := CV+1; C := SIN(X);

2

Function block call and FB output usage
(7.3.2.3)

CMD_TMR(IN := %IX5, PT := T#300ms);
A := CMD_TMR.Q ;

3 RETURN RETURN;

— 145 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Statement type/Reference Examples

4

IF …

 THEN …
 ELSIF …
 THEN …
 ELSE …

END_IF

D := B*B – 4.0*A*C;
IF D < 0.0
THEN NROOTS := 0;
 ELSIF D = 0.0
 THEN
 NROOTS := 1;
 X1 := - B/(2.0*A);
 ELSE
 NROOTS := 2 ;
 X1 := (- B + SQRT(D))/(2.0*A);
 X2 := (- B - SQRT(D))/(2.0*A);
END_IF;

5 CASE … OF

 …

 ELSE …

END_CASE

TW := WORD_BCD_TO_INT(THUMBWHEEL);
TW_ERROR := 0;
CASE TW OF
 1,5: DISPLAY := OVEN_TEMP;
 2: DISPLAY := MOTOR_SPEED;
 3: DISPLAY := GROSS - TARE;
 4,6..10: DISPLAY := STATUS(TW - 4);
 ELSE DISPLAY := 0;
 TW_ERROR := 1;
END_CASE;
QW100 := INT_TO_BCD(DISPLAY);

6 FOR .. TO.. BY … DO

 …
END_FOR

J := 101 ;
FOR I := 1 TO 100 BY 2 DO
 IF WORDS[I] = 'KEY' THEN
 J := I;
 EXIT;
 END_IF;
END_FOR;

7 WHILE … DO

 END_WHILE

J := 1;
WHILE J <= 100 & WORDS[J] <> 'KEY' DO
 J := J+2;
END_WHILE ;

8 REPEAT …
 UNTIL …

END_REPEAT

J := -1;
REPEAT
 J := J+2;
UNTIL J = 101 OR WORDS[J] = 'KEY'
END_REPEAT;

9 a EXIT EXIT; (see also in feature 6)

10 Empty Statement ;

11 a CONTINUE J := 1;
WHILE (J <= 100 AND WORDS[J] <> 'KEY') DO
..IF (J MOD 3 = 0) THEN

 CONTINUE;

 END_IF;

..(* Functionalities if j=1,2,4,5,7,8…*);

 …

 …
END_WHILE ;

a If the EXIT or CONTINUE statement (feature 9 or 11) is supported, then it shall be supported for all of the itera-
tion statements (FOR, WHILE, REPEAT) which are supported in the implementation.

7.3.2.2 Assignment statements 3077
The assignment statement replaces the current value of a single or multi-element variable by 3078
the result of evaluating an expression. An assignment statement shall consist of a variable ref-3079
erence on the left-hand side, followed by the assignment operator “:=”, followed by the ex-3080
pression to be evaluated. For instance, the statement 3081

A := B; 3082

— 146 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

would be used to replace the single data value of variable A by the current value of variable B if 3083
both were of type INT. However, if both A and B were of type ANALOG_CHANNEL_ 3084
CONFIGURATION as described in Table 12, then the values of all the elements of the structured 3085
variable A would be replaced by the current values of the corresponding elements of variable B. 3086

As illustrated in Figure 6, the assignment statement shall also be used to assign the value to 3087
be returned by a function, by placing the function name to the left of an assignment operator in 3088
the body of the function declaration. The value returned by the function shall be the result of 3089
the most recent evaluation of such an assignmen. It is an error to return from the evaluation of 3090
a function with an ENO value of TRUE, or with a non-existent ENO output, unless at least one 3091
such assignment has been made. 3092

7.3.2.3 Function and function block control statements 3093
Function and function block control statements consist of the mechanisms for calling function 3094
blocks and for returning control to the calling entity before the physical end of a function or 3095
function block. 3096

Function evaluation shall be called as part of expression evaluation, as specified in 7.3.1. 3097

Function blocks shall be called by a statement consisting of the name of the function block in-3098
stance followed by a parenthesized list of arguments, as illustrated in Table 64. The rules and 3099
features defined in 6.5.2.2 and Table 24 for function calls apply correspondingly, by replacing 3100
each occurrence of the term ‘function’ by the term ‘function block’ in these rules. 3101

The RETURN statement shall provide early exit from a function, function block or program (for 3102
example, as the result of the evaluation of an IF statement). 3103

7.3.2.4 Selection statements 3104

Selection statements include the IF and CASE statements. A selection statement selects one 3105
(or a group) of its component statements for execution, based on a specified condition. Exam-3106
ples of selection statements are given in Table 64. 3107

The IF statement specifies that a group of statements is to be executed only if the associated 3108
Boolean expression evaluates to the value 1 (true). If the condition is false, then either no 3109
statement is to be executed, or the statement group following the ELSE keyword (or the ELSIF 3110
keyword if its associated Boolean condition is true) is to be executed. 3111

The CASE statement consists of an expression which shall evaluate to a variable of type 3112
ANY_INT or of an enumerated data type (the “selector”), and a list of statement groups, each 3113
group being labelled by one or more integer, constant integers or enumerated values or ranges 3114
of integer values, as applicable. It specifies that the first group of statements, one of whose 3115
ranges contains the computed value of the selector, shall be executed. If the value of the se-3116
lector does not occur in a range of any case, the statement sequence following the keyword 3117
ELSE (if it occurs in the CASE statement) shall be executed. Otherwise, none of the statement 3118
sequences shall be executed. 3119

The maximum allowed number of selections in CASE statements is an implementation de-3120
pendency. 3121

7.3.2.5 Iteration statements 3122

Iteration statements specify that the group of associated statements shall be executed repeat-3123
edly. The FOR statement is used if the number of iterations can be determined in advance; oth-3124
erwise, the WHILE or REPEAT constructs are used. 3125

The EXIT statement shall be used to terminate iterations before the termination condition is 3126
satisfied. 3127

When the EXIT statement is located within nested iterative constructs, exit shall be from the 3128
innermost loop in which the EXIT is located, that is, control shall pass to the next statement 3129
after the first loop terminator (END_FOR, END_WHILE, or END_REPEAT) following the EXIT 3130

— 147 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

statement. For instance, after executing the statements shown in Figure 39, the value of the 3131
variable SUM shall be 15 if the value of the Boolean variable FLAG is 0, and 6 if FLAG=1. 3132

 3133

SUM := 0 ;
FOR I := 1 TO 3 DO
 FOR J := 1 TO 2 DO
 SUM := SUM + 1 ;

 IF FLAG THEN

 EXIT ;
 END_IF ;
 SUM := SUM + 1 ;
 END_FOR ;
 SUM := SUM + 1 ;
END_FOR ;

Figure 39 - EXIT statement (Example) 3134

The CONTINUE statement shall be used to jump over the remaining statements of the iteration 3135
loop in which the CONTINUE is located after the last statement of the loop right before the loop 3136
terminator (END_FOR, END_WHILE, or END_REPEAT). For instance, after executing the state-3137
ments shown in Figure 39a, the value of the variable SUM shall be 15 if the value of the Boo-3138
lean variable FLAG is 0, and 9 if FLAG=1. 3139

SUM := 0 ;
FOR I := 1 TO 3 DO
 FOR J := 1 TO 2 DO
 SUM := SUM + 1 ;
 IF FLAG THEN

 CONTINUE ;
 END_IF ;
 SUM := SUM + 1 ;
 END_FOR ;
 SUM := SUM + 1 ;
END_FOR ;

Figure 40 - CONTINUE statement (Example) 3140

The FOR statement indicates that a statement sequence shall be repeatedly executed, up to 3141
the END_FOR keyword, while a progression of values is assigned to the FOR loop control vari-3142
able. The control variable, initial value, and final value shall be expressions of the same integer 3143
type (for example, SINT, INT, or DINT) and shall not be altered by any of the repeated state-3144
ments. The FOR statement increments the control variable up or down from an initial value to a 3145
final value in increments determined by the value of an expression; this value defaults to 1. 3146
The iteration is terminated when the value of the control variable is outside the range specified 3147
by the TO construct. 3148

EXAMPLE 3149
 The FOR loop specified by 3150
 FOR I := 3 TO 1 STEP -1 DO … 3151
 terminates when the value of the variable I reaches 0. 3152
The test for the termination condition is made at the beginning of each iteration, so that the 3153
statement sequence is not executed if the initial value exceeds the final value. The value of the 3154
control variable after completion of the FOR loop is implementation-dependent. 3155

An example of the usage of the FOR statement is given in feature 6 of Table 64. In this exam-3156
ple, the FOR loop is used to determine the index J of the first occurrence (if any) of the string 3157

— 148 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

'KEY' in the odd-numbered elements of an array of strings WORDS with a subscript range of 3158
(1..100). If no occurrence is found, J will have the value 101. 3159

The WHILE statement causes the sequence of statements up to the END_WHILE keyword to be 3160
executed repeatedly until the associated Boolean expression is false. If the expression is ini-3161
tially false, then the group of statements is not executed at all. For instance, the 3162
FOR...END_FOR example given in Table 64 can be rewritten using the WHILE...END_WHILE 3163
construction shown in Table 64. 3164

The REPEAT statement causes the sequence of statements up to the UNTIL keyword to be 3165
executed repeatedly (and at least once) until the associated Boolean condition is true. For in-3166
stance, the WHILE...END_WHILE example given in Table 64 can be rewritten using the 3167
REPEAT...END_REPEAT construction shown in Table 64. 3168

The WHILE and REPEAT statements shall not be used to achieve inter-process synchronization, 3169
for example as a "wait loop" with an externally determined termination condition. The SFC ele-3170
ments shall be used for this purpose. 3171

It shall be an error in the sense of 5.1 if a WHILE or REPEAT statement is used in an algorithm 3172
for which satisfaction of the loop termination condition or execution of an EXIT statement can-3173
not be guaranteed. 3174

8 Graphic languages 3175

8.1 Common elements 3176

8.1.1 General 3177

The graphic languages defined in this standard are LD (Ladder Diagram) and FBD (Function 3178
Block Diagram). The sequential function chart (SFC) elements can be used in conjunction with 3179
either of these languages. 3180

The elements defined in 8.1.2 and 8.1.3 apply to both the graphic languages in this standard, 3181
that is, LD (Ladder Diagram) and FBD (Function Block Diagram), and to the graphic represen-3182
tation of sequential function chart (SFC) elements. 3183

8.1.2 Representation of lines and blocks 3184
The graphic language elements defined in this clause are drawn with line elements using char-3185
acters from the character set defined in 6.1.1, or using graphic or semi-graphic elements, as 3186
shown in Table 65. 3187

Lines can be extended by the use of connectors as shown in Table 65. No storage of data or 3188
association with data elements shall be associated with the use of connectors; hence, to avoid 3189
ambiguity, it shall be an error if the identifier used as a connector label is the same as the 3190
name of another named element within the same program organization unit. 3191

Any restrictions on network topology in a particular implementation shall be expressed as im-3192
plementation dependencies. 3193

Table 65 - Representation of lines and blocks 3194

No. Feature Example

Horizontal lines

1 ISO/IEC 10646-1 “minus” character

2 Graphic or semi-graphic

Vertical lines

3 ISO/IEC 10646-1 “vertical line” character

4 Graphic or semi-graphic

|

— 149 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 3195

Horizontal/vertical connection

5 ISO/IEC 10646-1 “plus” character

6 Graphic or semi-graphic

|
--+--
|

Line crossings without connection

7 ISO/IEC 10646-1 characters

8 Graphic or semi-graphic

|
----|----

|

Connected and non-connected corners

9 ISO/IEC 10646-1 characters

10 Graphic or semi-graphic

| |
----+ +----

| |
----+-+ +----

| | |

Blocks with connecting lines

11 ISO/IEC 10646-1 characters

12 Graphic or semi-graphic

 |
 +--------+
---| |

 | |---
---| |
 +--------+

 |

Connectors and continuation

13 ISO/IEC 10646-1

14 Graphic or semi-graphic connectors

---------->OTTO>
>OTTO>----------

8.1.3 Direction of flow in networks 3196
A network is defined as a maximal set of interconnected graphic elements, excluding the left 3197
and right rails in the case of networks in the LD language defined in 8.2. Provision shall be 3198
made to associate with each network or group of networks in a graphic language a network la-3199
bel delimited on the right by a colon (:). This label shall have the form of an identifier as de-3200
fined in 6.1.2 or an unsigned decimal integer as defined in 6.2.1. The scope of a network and 3201
its label shall be local to the program organization unit in which the network is located. Exam-3202
ples of networks and network labels are shown in annex F. 3203

Graphic languages are used to represent the flow of a conceptual quantity through one or more 3204
networks representing a control plan, that is: 3205

• Power flow”, analogous to the flow of electric power in an electromechanical relay system, 3206
typically used in relay ladder diagrams; 3207

• Signal flow”, analogous to the flow of signals between elements of a signal processing sys-3208
tem, typically used in function block diagrams; 3209

• Activity flow”, analogous to the flow of control between elements of an organization, or be-3210
tween the steps of an electromechanical sequencer, typically used in sequential function 3211
charts. 3212

The appropriate conceptual quantity shall flow along lines between elements of a network ac-3213
cording to the following rules: 3214

1) Power flow in the LD language shall be from left to right. 3215
2) Signal flow in the FBD language shall be from the output (right-hand) side of a function or 3216
function block to the input (left-hand) side of the function or function block(s) so connected. 3217
3) Activity flow between the SFC elements shall be from the bottom of a step through the ap-3218
propriate transition to the top of the corresponding successor step(s). 3219

— 150 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

8.1.4 Evaluation of networks 3220
The order in which networks and their elements are evaluated is not necessarily the same as 3221
the order in which they are labelled or displayed. Similarly, it is not necessary that all networks 3222
be evaluated before the evaluation of a given network can be repeated. However, when the 3223
body of a program organization unit consists of one or more networks, the results of network 3224
evaluation within the said body shall be functionally equivalent to the observance of the follow-3225
ing rules: 3226

1. No element of a network shall be evaluated until the states of all of its inputs have been 3227
evaluated. 3228

2. The evaluation of a network element shall not be complete until the states of all of its out-3229
puts have been evaluated. 3230

3. The evaluation of a network is not complete until the outputs of all of its elements have been 3231
evaluated, even if the network contains one of the execution control elements defined in 3232
 8.1.5. 3233

4. The order in which networks are evaluated shall conform to the provisions of 8.2.7 for the 3234
LD language and 8.3.3 for the FBD language. 3235

A feedback path is said to exist in a network when the output of a function or function block is 3236
used as the input to a function or function block which precedes it in the network; the associ-3237
ated variable is called a feedback variable. For instance, the Boolean variable RUN is the 3238
feedback variable in the example shown in Figure 41. A feedback variable can also be an out-3239
put element of a function block data structure as defined in 6.5.3. 3240

Feedback paths can be utilized in the graphic languages defined in 8.2 and 8.3, subject to the 3241
following rules: 3242

1. Explicit loops such as the one shown in Figure 41 a) shall only appear in the FBD language 3243
defined in 8.3. 3244

2. It shall be possible for the user to utilize an implementation-dependent means to deter-3245
mine the order of execution of the elements in an explicit loop, for instance by selection of 3246
feedback variables to form an implicit loop as shown in Figure 41 b). 3247

3. Feedback variables shall be initialized by one of the mechanisms defined in 6.4. The initial 3248
value shall be used during the first evaluation of the network. It shall be an error if a feed-3249
back variable is not initialized. 3250

4. Once the element with a feedback variable as output has been evaluated, the new value of 3251
the feedback variable shall be used until the next evaluation of the element. 3252

a) Explicit loop

b) Implicit loop

— 151 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

c) LD language equivalent

Figure 41 - Feedback path (Example) 3253

8.1.5 Execution control elements 3254
Transfer of program control in the LD and FBD languages shall be represented by the graphical 3255
elements shown in Table 66. 3256

Jumps shall be shown by a Boolean signal line terminated in a double arrowhead. The signal 3257
line for a jump condition shall originate at a Boolean variable, at a Boolean output of a function 3258
or function block, or on the power flow line of a ladder diagram. A transfer of program control to 3259
the designated network label shall occur when the Boolean value of the signal line is 1 (TRUE); 3260
thus, the unconditional jump is a special case of the conditional jump. 3261

The target of a jump shall be a network label within the program organization unit within which 3262
the jump occurs. If the jump occurs within an ACTION...END_ACTION construct, the target of 3263
the jump shall be within the same construct. 3264

Conditional returns from functions and function blocks shall be implemented using a RETURN 3265
construction as shown in Table 66. Program execution shall be transferred back to the calling 3266
entity when the Boolean input is 1 (TRUE), and shall continue in the normal fashion when the 3267
Boolean input is 0 (FALSE). Unconditional returns shall be provided by the physical end of the 3268
function or function block, or by a RETURN element connected to the left rail in the LD lan-3269
guage, as shown in Table 66. 3270

Table 66 - Graphic execution control elements 3271

No. Symbol/Example Explanation

Unconditional jump

1 1---->>LABELA

FBD language

2 |
 +---->>LABELA
 |

LD language

Conditional jump

3 X---->>LABELB
 +---+
 %IX20---| & |--->>NEXT
 %MX50---| |
 +---+
 NEXT:
 +---+
 %IX25---|>=1|---%QX100
 %MX60---| |
 +---+

(FBD language)
Example:
jump condition

jump target

— 152 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

No. Symbol/Example Explanation

4 | X
 +-| |---->>LABELB
 |
 |
 | %IX20 %MX50
 +---| |-----| |--->>NEXT
 |
 |
 NEXT:
 | %IX25 %QX100 |
 +----| |----+----()---+
 | %MX60 | |
 +----| |----+ |
 | |

LD language

Example:
jump condition

jump target

Conditional return

5 | X
 +--| |---<RETURN>
 |

LD language

6 X---<RETURN> FBD language

Unconditional return

7 END_FUNCTION
END_FUNCTION_BLOCK

from FUNCTION
from FUNCTION_BLOCK

8 |
 +---<RETURN>

 |

LD language

 3272

8.2 Ladder diagram (LD) 3273

8.2.1 General 3274

This subclause defines the LD language for ladder diagram programming of programmable 3275
controllers. 3276

A LD program enables the programmable controller to test and modify data by means of stan-3277
dardized graphic symbols. These symbols are laid out in networks in a manner similar to a 3278
“rung” of a relay ladder logic diagram. LD networks are bounded on the left and right by power 3279
rails. 3280

8.2.2 Power rails 3281
As shown in Table 67, the LD network shall be delimited on the left by a vertical line known as 3282
the left power rail, and on the right by a vertical line known as the right power rail. The right 3283
power rail may be explicit or implied. 3284

Table 67 - Power rails 3285

No. Symbol Description

1

 |
 +---
 |

Left power rail
(with attached horizontal link)

2

 |
 ---+
 |

Right power rail
(with attached horizontal link)

— 153 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

8.2.3 Link elements and states 3286
As shown in Table 68, link elements may be horizontal or vertical. The state of the link element 3287
shall be denoted “ON” or “OFF”, corresponding to the literal Boolean values 1 or 0, respectively. 3288
The term link state shall be synonymous with the term power flow. 3289

The state of the left rail shall be considered ON at all times. No state is defined for the right rail. 3290

A horizontal link element shall be indicated by a horizontal line. A horizontal link element 3291
transmits the state of the element on its immediate left to the element on its immediate right. 3292

The vertical link element shall consist of a vertical line intersecting with one or more horizontal 3293
link elements on each side. The state of the vertical link shall represent the inclusive OR of the 3294
ON states of the horizontal links on its left side, that is, the state of the vertical link shall be: 3295

• OFF if the states of all the attached horizontal links to its left are OFF; 3296

• ON if the state of one or more of the attached horizontal links to its left is ON. 3297

The state of the vertical link shall be copied to all of the attached horizontal links on its right. 3298
The state of the vertical link shall not be copied to any of the attached horizontal links on its 3299
left. 3300

Table 68 - Link elements 3301

No. Symbol Description

1 ----------- Horizontal link

2 |
 ----+----
 ----+
 |
 +----

Vertical link
(with attached horizontal links)

8.2.4 Contacts 3302
A contact is an element which imparts a state to the horizontal link on its right side which is 3303
equal to the Boolean AND of the state of the horizontal link at its left side with an appropriate 3304
function of an associated Boolean input, output, or memory variable. A contact does not modify 3305
the value of the associated Boolean variable. Standard contact symbols are given in Table 69. 3306

Table 69 - Contacts a 3307

Static contacts

No. Symbol Description

Normally open contact

1a ***
--| |--

The state of the left link is copied to the right link if the state of the asso-
ciated Boolean variable (indicated by "***") is ON. Otherwise, the state
of the right link is OFF.

1b ***
--! !--

semigraphic

Normally closed contact

2a ***
--|/|--

The state of the left link is copied to the right link if the state of the asso-
ciated Boolean variable is OFF. Otherwise, the state of the right link is
OFF.

2b ***
--!/!--

semigraphic

Transition-sensing contacts

— 154 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

3 ***
--|P|--

Positive transition-sensing contact
The state of the right link is ON from one evaluation of this element to the
next when a transition of the associated variable from OFF to ON is
sensed at the same time that the state of the left link is ON. The state of
the right link shall be OFF at all other times.

4 ***
--!P!--

semigrafic

5 ***
--|N|--

Negative transition-sensing contact
The state of the right link is ON from one evaluation of this element to the
next when a transition of the associated variable from ON to OFF is
sensed at the same time that the state of the left link is ON. The state of
the right link shall be OFF at all other times.

6 ***
--!N!--

semigrafic

Compare contact (typed)
The state of the right link is ON from one evaluation of this element to the
next when the left link is ON and the <cmp> result of the operands 1 and 2
is true.
The state of the right link shall be OFF.
<cmp> may be substituted by one of the compare functions
that are valid for the given data type (see.table 32).
DT is the data type of both given operands.

7

<cmp>
<operand 1>

<operand 2>
 DT

Example:

If the left link is ON and
(intvalue1 > intvalue2) the right link
switches to ON.
Both intvalue1 and intvalue2 are of the
data type INT

Compare contact (overloaded)
The state of the right link is ON from one evaluation of this element to the
next when the left link is ON and the <cmp> result of the operands 1 and 2
is true.
The state of the right link shall be OFF otherwise.
<cmp> may be substituted by one of the compare functions that are valid
for the operands data type (see.table 32).

8

<cmp>

<operand 1>

<operand 2>

Example:

If the left link is ON and
(value1 <> value2) the right link
switches to ON.

a As specified in 6.2, the exclamation mark “!” shall be used when a national character set does not support
the vertical bar “|”.

8.2.5 Coils 3308
A coil copies the state of the link on its left to the link on its right without modification, and 3309
stores an appropriate function of the state or transition of the left link into the associated Boo-3310
lean variable. Standard coil symbols are given in Table 70. 3311

EXAMPLE 3312
In the rung shown below, the value of the Boolean output a is always TRUE, while the value of outputs c, 3313
d und e upon completion of an evaluation of the rung is equal to the value of the input b. 3314

| a b c d | 3315
+--()--| |--+--()---()--+ 3316
| | e | 3317
| +-----()-----+ 3318

Table 70 - Coils 3319

No. Symbol Description

Momentary coils

— 155 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

1 ***
--()--

Coil
The state of the left link is copied to the associated Boolean variable and
to the right link.

2 ***
--(/)--

Negated coil
The state of the left link is copied to the right link. The inverse of the state
of the left link is copied to the associated Boolean variable, that is, if the
state of the left link is OFF, then the state of the associated variable is ON,
and vice versa.

Latched Coils

3 ***
--(S)--

SET (latch) coil
The associated Boolean variable is set to the ON state when the left link is
in the ON state, and remains set until reset by a RESET coil.

4 ***
--(R)--

RESET (unlatch) coil
The associated Boolean variable is reset to the OFF state when the left link
is in the ON state, and remains reset until set by a SET coil.

Transition-sensing coils

8 ***
--(P)--

Positive transition-sensing coil
The state of the associated Boolean variable is ON from one evaluation of
this element to the next when a transition of the left link from OFF to ON is
sensed. The state of the left link is always copied to the right link.

9 ***
--(N)--

Negative transition-sensing coil
The state of the associated Boolean variable is ON from one evaluation of
this element to the next when a transition of the left link from ON to OFF is
sensed. The state of the left link is always copied to the right link.

8.2.6 Functions and function blocks 3320

The representation of functions and function blocks in the LD language shall be as defined in 3321
 6.5.2 and 6.5.3, with the following exceptions: 3322

1) Actual variable connections may optionally be shown by writing the appropriate data or 3323
variable outside the block adjacent to the formal variable name on the inside. 3324

2) At least one Boolean input and one Boolean output shall be shown on each block to allow 3325
for power flow through the block. 3326

8.2.7 Order of network evaluation 3327

Within a program organization unit written in LD, networks shall be evaluated in top to bottom 3328
order as they appear in the ladder diagram, except as this order is modified by the execution 3329
control elements defined in 8.1.5. 3330

8.3 Function Block Diagram (FBD) 3331

8.3.1 General 3332

This subclause defines FBD, a graphic language for the programming of programmable con-3333
trollers which is consistent, as far as possible, with IEC 60617-12. Where conflicts exist be-3334
tween this standard and IEC 60617-12, the provisions of this standard shall apply for the pro-3335
gramming of programmable controllers in the FBD language. 3336

The provisions of 6 and 8.1 shall apply to the construction and interpretation of programmable 3337
controller programs in the FBD language. 3338

8.3.2 Combination of elements 3339
Elements of the FBD language shall be interconnected by signal flow lines following the con-3340
ventions of 8.1.2. 3341

Outputs of function blocks shall not be connected together. In particular, the “wired-OR” con-3342
struct of the LD language is not allowed in the FBD language; an explicit Boolean “OR” block is 3343
required instead, as shown in Figure 42. 3344

— 156 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 | a c |
 +---||--+--()--+
 | b | |
 +--||---+ |
 | |

 +-----+
 a---| >=1 |---c
 b---| |
 +-----+

a) “Wired-OR” in LD language b) Function in FBD language

Figure 42 - Boolean OR (Example) 3345

8.3.3 Order of network evaluation 3346
When a program organization unit written in the FBD language contains more than one net-3347
work, the manufacturer shall provide implementation-dependent means by which the user 3348
may determine the order of execution of networks. 3349

— 157 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Annex A 3350
(normative) 3351

Specification method for textual languages 3352

A.1 Syntax 3353

A.1.1 Terminal symbols 3354
A syntax is defined by a set of terminal symbols to be utilized for program specification; a set 3355
of non-terminal symbols defined in terms of the terminal symbols; and a set of production rules 3356
specifying those definitions. 3357

The terminal symbols for textual programmable controller programs shall consist of combina-3358
tions of the characters in the character set defined in 6.1.1. 3359

For the purposes of this part, terminal textual symbols consist of the appropriate character 3360
string enclosed in paired single or double quotes. 3361

EXAMPLE 1 3362
A terminal symbol represented by the character string ABC can be represented by either "ABC" or 'ABC'. 3363

This allows the representation of strings containing either single or double quotes. 3364

EXAMPLE 2 3365
A terminal symbol consisting of the double quote itself would be represented by '"'. 3366

A special terminal symbol utilized in this syntax is the end-of-line delimiter, which is repre-3367
sented by the unquoted character string EOL. This symbol shall normally consist of the “para-3368
graph separator” character defined as hexadecimal code 2029 by ISO/IEC 10646-1. 3369

A second special terminal symbol utilized in this syntax is the “null string”, that is, a string con-3370
taining no characters. This is represented by the terminal symbol NIL. 3371

The case of letters shall not be significant in terminal symbols. 3372

A.1.2 Non-terminal symbols 3373

Non-terminal textual symbols shall be represented by strings of lower-case letters, numbers, 3374
and the underline character (_), beginning with a lower-case letter. 3375

EXAMPLE 3376
The strings nonterm1 and non_term_2 are valid non-terminal symbols, while the strings 3nonterm and 3377
_nonterm4 are not. 3378

A.1.3 Production rules 3379

The production rules for textual programmable controller programming languages shall form an 3380
extended grammar in which each rule has the form 3381

non_terminal_symbol ::= extended_structure 3382

This rule can be read as: 3383

“A non_terminal_symbol can consist of an extended_structure.” 3384

Extended structures can be constructed according to the following rules: 3385

1) The null string, NIL, is an extended structure. 3386

2) A terminal symbol is an extended structure. 3387
3) A non-terminal symbol is an extended structure. 3388

4) If S is an extended structure, then the following expressions are also extended structures: 3389

(S), meaning S itself. 3390

{S}, closure, meaning zero or more concatenations of S. 3391

[S], option, meaning zero or one occurrence of S. 3392

— 158 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

5) If S1 and S2 are extended structures, then the following expressions are extended struc-3393
tures: 3394

S1 | S2, alternation, meaning a choice of S1 or S2. 3395

S1 S2, concatenation, meaning S1 followed by S2. 3396

6) Concatenation precedes alternation, that is, 3397

S1 | S2 S3 is equivalent to S1 | (S2 S3), 3398
 and S1 S2 | S3 is equivalent to (S1 S2) | S3. 3399

A.2 Semantics 3400

Programmable controller textual programming language semantics are defined in this part of 3401
IEC 61131 by appropriate natural language text, accompanying the production rules, which ref-3402
erences the descriptions provided in the appropriate clauses. Standard options available to the 3403
user and manufacturer are specified in these semantics. 3404

In some cases it is more convenient to embed semantic information in an extended structure. 3405
In such cases, this information is delimited by paired angle brackets, for example, <semantic 3406
information>. 3407

— 159 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Annex B 3408
(normative) 3409

Formal specifications of language elements 3410

B.1 Programming model 3411

The contents of this annex are normative in the sense that a compiler which is capable of rec-3412
ognizing all the syntax in this annex shall be capable of recognizing the syntax of any textual 3413
language implementation complying with this standard. 3414

PRODUCTION RULES: 3415

library_element_name ::= data_type_name | function_name 3416
| function_block_type_name | program_type_name 3417
| resource_type_name | configuration_name 3418

library_element_declaration ::= data_type_declaration 3419
| function_declaration | function_block_declaration 3420
| program_declaration | configuration_declaration 3421

SEMANTICS: These productions reflect the basic programming model defined in 4.3, where 3422
declarations are the basic mechanism for the production of named library elements. The syntax 3423
and semantics of the non-terminal symbols given above are defined in the subclauses listed 3424
below. 3425

Non-terminal symbol Syntax Semantics

data_type_name

data_type_declaration

 B.2.3 6.3

function_name

function_declaration

 B.2.5.1 6.5.2

function_block_type_name

function_block_declaration

 B.2.5.2 xxx

program_type_name

program_declaration

 B.2.5.3 0

resource_type_name

configuration_name B.2.7 6.7

configuration_declaration

B.2 Common elements 3426

B.2.1 Letters, digits and identifiers 3427

SEMANTICS: 3428

The ellipsis <...> here indicates the ISO/IEC 10646-1 sequence of 26 letters. 3429

Characters from national character sets can be used; however, international portability of the 3430
printed representation of programs cannot be guaranteed in this case. 3431

PRODUCTION RULES: 3432

letter ::= 'A' | 'B' | <...> | 'Z' | 'a' | 'b' | <...> | 'z' 3433
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' 3434

 | '9' 3435
octal_digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' 3436
hex_digit ::= digit | 'A'|'B'|'C'|'D'|'E'|'F' 3437
identifier := (letter | ('_' (letter | digit))) {['_'] (letter 3438

 | digit)} 3439

— 160 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

B.2.2 Constants 3440

B.2.2.1 General 3441

SEMANTICS: The external representations of data described in 6.2 are designated as “con-3442
stants” in this annex. 3443

PRODUCTION RULE: 3444

constant ::= numeric_literal | character_string | time_literal 3445
| bit_string_literal | boolean_literal 3446

B.2.2.2 Numeric literals 3447

SEMANTICS: see 6.2.1. 3448

PRODUCTION RULES: 3449

numeric_literal ::= integer_literal | real_literal 3450
integer_literal ::= [integer_type_name '#'](signed_integer 3451

 | binary_integer | octal_integer | hex_integer) 3452
signed_integer ::= ['+' |'-'] unsigned_integer 3453
unsigned_integer ::= digit {['_'] digit} 3454
binary_integer ::= '2#' bit {['_'] bit} 3455
bit ::= '1' | '0' 3456
octal_integer ::= '8#' octal_digit {['_'] octal_digit} 3457
hex_integer ::= '16#' hex_digit {['_'] hex_digit} 3458
real_literal ::= [real_type_name '#']signed_integer '.' 3459

 integer [exponent] 3460
exponent ::= ('E' | 'e') ['+'|'-'] integer 3461
bit_string_literal ::= [('BYTE' | 'WORD' | 'DWORD' | 'LWORD') '#'] 3462

 (unsigned_integer | binary_integer 3463
 | octal_integer | hex_integer) 3464

boolean_literal ::= ['BOOL#'] ('1' | '0' | 'TRUE' | 'FALSE') 3465

B.2.2.3 Character strings 3466

SEMANTICS: see 6.2.2. 3467

PRODUCTION RULES: 3468

character_string ::= single_byte_character_string 3469
 | double_byte_character_string 3470

single_byte_character_string 3471
 ::= "'" {single_byte_character_representation} "'" 3472
 3473

double_byte_character_string 3474
 ::= '"' {double_byte_character_representation} '"' 3475

single_byte_character_representation 3476
 ::= common_character_representation | "$'" | '"' 3477
 | '$' hex_digit hex_digit 3478

double_byte_character_representation 3479
 ::= common_character_representation | '$"' 3480
 | "'"| '$' hex_digit hex_digit hex_digit hex_digit 3481

common_character_representation 3482
 ::= <any printable character except '$', '"' or "'"> 3483
 | '$$' | '$L' | '$N' | '$P' | '$R' | '$T' 3484
 | '$l' | '$n' | '$p' | '$r' | '$t' 3485

— 161 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

B.2.2.4 Time literals 3486

B.2.2.4.1 General 3487

SEMANTICS: see 6.2.3. 3488

PRODUCTION RULE: 3489

time_literal ::= duration | time_of_day | date | date_and_time 3490

B.2.2.4.2 Duration 3491

SEMANTICS: see 6.2.3.2. 3492

NOTE The semantics of impose additional constraints on the allowable values of hours, minutes, seconds, 3493
and milliseconds. 3494
PRODUCTION RULES: 3495

duration ::= ('T' | 'TIME') '#' ['-'] interval 3496
interval ::= days | hours | minutes | seconds | milliseconds 3497
days ::= fixed_point ('d') | integer ('d') ['_'] hours 3498
fixed_point ::= integer ['.' integer] 3499
hours ::= fixed_point ('h') | integer ('h') ['_'] minutes 3500
minutes ::= fixed_point ('m') | integer ('m') ['_'] seconds 3501
seconds ::= fixed_point ('s') | integer ('s') ['_'] milliseconds 3502
milliseconds ::= fixed_point ('ms') 3503

B.2.2.4.3 Time of day and date 3504

SEMANTICS: see 6.2.3.2. 3505

NOTE The semantics impose additional constraints on the allowable values of day_hour, day_minute, 3506
day_second, year, month, and day. 3507
PRODUCTION RULES: 3508

time_of_day ::= ('TIME_OF_DAY' | 'TOD') '#' daytime 3509
daytime ::= day_hour ':' day_minute ':' day_second 3510
day_hour ::= integer 3511
day_minute ::= integer 3512
day_second ::= fixed_point 3513
date ::= ('DATE' | 'D') '#' date_literal 3514
date_literal ::= year '-' month '-' day 3515
year ::= integer 3516
month ::= integer 3517

day ::= integer 3518

date_and_time ::= ('DATE_AND_TIME' | 'DT') '#' date_literal '-' daytime 3519

B.2.3 Data types 3520

B.2.3.1 General 3521

SEMANTICS: see 6.3. 3522

PRODUCTION RULES: 3523

data_type_name ::= non_generic_type_name | generic_type_name 3524
non_generic_type_name ::= elementary_type_name | derived_type_name 3525

— 162 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

B.2.3.2 Elementary data types 3526

SEMANTICS: See 6.3.2. 3527

PRODUCTION RULES: 3528

elementary_type_name ::= numeric_type_name | date_type_name 3529
 | bit_string_type_name 3530
 | 'STRING' | 'WSTRING' | 'TIME' 3531

numeric_type_name ::= integer_type_name | real_type_name 3532
integer_type_name ::= signed_integer_type_name 3533

 | unsigned_integer_type_name 3534
signed_integer_type_name ::= 'SINT' | 'INT' | 'DINT' | 'LINT' 3535
unsigned_integer_type_name ::= 'USINT' | 'UINT' | 'UDINT' | 'ULINT' 3536
real_type_name ::= 'REAL' | 'LREAL' 3537
date_type_name ::= 'DATE' | 'TIME_OF_DAY' | 'TOD' 3538

 | 'DATE_AND_TIME' | 'DT' 3539
bit_string_type_name ::= 'BOOL' | 'BYTE' | 'WORD' | 'DWORD' | 'LWORD' 3540

B.2.3.3 Generic data types 3541

SEMANTICS: see 6.3.2. 3542

PRODUCTION RULE: 3543

generic_type_name ::= 'ANY' | 'ANY_DERIVED' | 'ANY_ELEMENTARY' 3544
 | 'ANY_MAGNITUDE' | 'ANY_NUM' | 'ANY_REAL' | 'ANY_INT' | 'ANY_BIT' 3545
 | 'ANY_STRING' | 'ANY_DATE' 3546

B.2.3.4 Derived data types 3547

SEMANTICS: see 6.3.3. 3548

PRODUCTION RULES: 3549

derived_type_name ::= single_element_type_name | array_type_name 3550
 | structure_type_name | string_type_name 3551

single_element_type_name ::= simple_type_name | subrange_type_name 3552
 | enumerated_type_name 3553

simple_type_name ::= identifier 3554
subrange_type_name ::= identifier 3555
enumerated_type_name ::= identifier 3556
array_type_name ::= identifier 3557
structure_type_name ::= identifier 3558
data_type_declaration ::= 'TYPE' type_declaration ';' {type_declaration ';'} 3559

 'END_TYPE' 3560
type_declaration ::= single_element_type_declaration 3561

 | array_type_declaration 3562
 | structure_type_declaration 3563
 | string_type_declaration 3564

single_element_type_declaration ::= simple_type_declaration 3565
| subrange_type_declaration | enumerated_type_declaration 3566

simple_type_declaration ::= simple_type_name ':' simple_spec_init 3567
simple_spec_init ::= simple_specification [':=' constant] 3568
simple_specification ::= elementary_type_name | simple_type_name 3569
subrange_type_declaration ::= subrange_type_name ':' subrange_spec_init 3570
subrange_spec_init ::= subrange_specification [':=' signed_integer] 3571

— 163 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

subrange_specification ::= integer_type_name '(' subrange')' 3572
 | subrange_type_name 3573

subrange ::= signed_integer '..' signed_integer 3574
enumerated_type_declaration 3575

 ::= enumerated_type_name ':' enumerated_spec_init 3576
enumerated_spec_init ::= enumerated_specification 3577

 [':=' enumerated_value] 3578
enumerated_specification ::= ('(' enumerated_value_spec 3579

 {',' enumerated_value_spec} ')') 3580
 | enumerated_type_name 3581

enumerated_value_spec ::= identifier 3582
enumerated_value ::= [enumerated_type_name '#'] identifier 3583
array_type_declaration ::= array_type_name ':' array_spec_init 3584
array_spec_init ::= array_specification 3585

 [':=' array_initialization] 3586
array_specification ::= array_type_name 3587

 | 'ARRAY' '[' subrange {',' subrange} ']' 3588
 'OF' non_generic_type_name 3589

array_initialization ::='[' array_initial_elements 3590
 {',' array_initial_elements} ']' 3591

array_initial_elements ::= array_initial_element 3592
 | integer '(' [array_initial_element] ')' 3593

array_initial_element ::= constant | enumerated_value 3594
 | structure_initialization 3595
 | array_initialization 3596

structure_type_declaration 3597
 ::= structure_type_name ':' 3598
 structure_specification 3599

structure_specification ::= structure_declaration 3600
 | initialized_structure 3601

initialized_structure ::= structure_type_name 3602
 [':=' structure_initialization] 3603

structure_declaration ::= 'STRUCT' [structure_options] 3604
 structure_element_declaration ';' 3605
 {structure_element_declaration ';'} 3606
 'END_STRUCT' 3607

structure_options ::= 'LAYOUT_EXPLICIT' ('LITTLE_ENDIAN' 3608
 | 'BIG_ENDIAN') ['OVERLAP'] 3609

structure_element_declaration 3610
 ::= structure_element_name 3611
 [relative_location]':' 3612
 (simple_spec_init | subrange_spec_init 3613
 | enumerated_spec_init 3614
 | array_spec_init 3615
 | initialized_structure) 3616

structure_element_name ::= identifier 3617
relative_location ::= 'AT' ('%B'byte_location['.'bit8_location] 3618

 | '%W'word_location['.'bit16_location]) 3619
byte_location ::= unsigned_integer 3620
word_location ::= unsigned_integer 3621
bit8_location ::= '0' .. '7' 3622
bit16_location ::= '0' .. '15' 3623
structure_initialization ::= '(' structure_element_initialization 3624

 {',' structure_element_initialization} ')' 3625

— 164 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

structure_element_initialization 3626
 ::= structure_element_name ':=' (constant 3627
 | enumerated_value 3628
 | array_initialization 3629
 | structure_initialization) 3630

string_type_name ::= identifier 3631
string_type_declaration ::= string_type_name ':' ('STRING'|'WSTRING') 3632

 ['[' integer ']'] [':=' character_string] 3633

B.2.4 Variables 3634

B.2.4.1 General 3635

SEMANTICS: see 6.3.4.2. 3636

PRODUCTION RULES: 3637

variable ::= direct_variable | symbolic_variable 3638
symbolic_variable ::= variable_name | multi_element_variable 3639
variable_name ::= identifier 3640

B.2.4.2 Directly represented variables 3641

SEMANTICS: see 6.4.2.2. 3642

PRODUCTION RULES: 3643

direct_variable ::= '%' location_prefix size_prefix integer {'.' integer} 3644
location_prefix ::= 'I' | 'Q' | 'M' 3645
size_prefix ::= NIL | 'X' | 'B' | 'W' | 'D' | 'L' 3646

B.2.4.3 Multi-element variables 3647

SEMANTICS: see 6.4.2.3. 3648

PRODUCTION RULES: 3649

multi_element_variable ::= array_variable | structured_variable 3650
array_variable ::= subscripted_variable subscript_list 3651
subscripted_variable ::= symbolic_variable 3652
subscript_list ::= '[' subscript {',' subscript} ']' 3653
subscript ::= expression 3654
structured_variable ::= record_variable '.' field_selector 3655
record_variable ::= symbolic_variable 3656
field_selector ::= identifier 3657

B.2.4.4 Declaration and initialization 3658

SEMANTICS: see 6.4.2 and 6.4.3. The non-terminal function_block_type_name is defined 3659
in B.2.5.2. 3660

PRODUCTION RULES: 3661

input_declarations ::= 'VAR_INPUT' ['RETAIN' | 'NON_RETAIN'] 3662
 input_declaration ';' 3663
 {input_declaration ';'} 3664
 'END_VAR' 3665

input_declaration ::= var_init_decl | edge_declaration 3666
 | array_var_flex_decl 3667

— 165 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

edge_declaration ::= var1_list ':' 'BOOL' ('R_EDGE' | 'F_EDGE') 3668
 array_var_flex_decl 3669
 ::= var1_list ':' array_spec_flex 3670

array_spec_flex ::= 'ARRAY' '[' '*' {',' '*'} ']' 'OF' 3671
 non_generic_type_name 3672

var_init_decl ::= var1_init_decl | array_var_init_decl 3673
 | structured_var_init_decl 3674
 | fb_name_decl 3675
 | string_var_declaration 3676

var1_init_decl ::= var1_list ':' (simple_spec_init 3677
 | subrange_spec_init 3678
 | enumerated_spec_init) 3679

var1_list ::= variable_name {',' variable_name} 3680
array_var_init_decl 3681

 ::= var1_list ':' array_spec_init 3682
structured_var_init_decl 3683

 ::= var1_list ':' initialized_structure 3684
fb_name_decl ::= fb_name_list ':' 3685

 function_block_type_name 3686
 [’:=’ structure_initialization] 3687

fb_name_list ::= fb_name {',' fb_name} 3688
fb_name ::= identifier 3689
output_declarations 3690

 ::= 'VAR_OUTPUT' ['RETAIN' | 'NON_RETAIN'] 3691
 output_declaration ';' 3692
 { output_declaration ';'} 3693
 'END_VAR' 3694

output_declaration ::= var_init_decl | array_var_flex_decl 3695
input_output_declarations 3696
 ::= 'VAR_IN_OUT' 3697

 var_declaration ';' 3698
 {var_declaration ';'} 3699
 'END_VAR' 3700

var_declaration ::= temp_var_decl | fb_name_decl 3701
 | array_var_flex_decl 3702

temp_var_decl ::= var1_declaration | array_var_declaration 3703
 | structured_var_declaration 3704
 | string_var_declaration 3705

var1_declaration ::= var1_list ':' (simple_specification 3706
 | subrange_specification | enumerated_specification) 3707

array_var_declaration 3708
 ::= var1_list ':' array_specification 3709

structured_var_declaration 3710
 ::= var1_list ':' structure_type_name 3711

var_declarations ::= 'VAR' ['CONSTANT'] 3712
 var_init_decl ';' 3713
 {(var_init_decl ';')} 3714
 'END_VAR' 3715

retentive_var_declarations 3716
 ::= 'VAR' 'RETAIN' 3717
 var_init_decl ';' {var_init_decl ';'} 3718
 'END_VAR' 3719

located_var_declarations 3720
 ::= 'VAR' ['CONSTANT' | 'RETAIN' | 'NON_RETAIN'] 3721
 located_var_decl ';' {located_var_decl ';'} 3722
 'END_VAR' 3723

located_var_decl ::= [variable_name] location ':' located_var_spec_init 3724

— 166 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

external_var_declarations 3725
 := 'VAR_EXTERNAL' ['CONSTANT'] 3726
 external_declaration ';' {external_declaration ';'} 3727
 'END_VAR' 3728

external_declaration 3729
 ::= global_var_name ':' 3730
 (simple_specification | subrange_specification 3731
 | enumerated_specification | array_specification 3732
 | structure_type_name | function_block_type_name) 3733

global_var_name ::= identifier 3734
global_var_declarations 3735

 ::= 'VAR_GLOBAL' ['CONSTANT' | 'RETAIN'] 3736
 global_var_decl ';' {global_var_decl ';'} 3737
 'END_VAR' 3738

global_var_decl ::= global_var_spec ':' 3739
 (located_var_spec_init | function_block_type_name) 3740

global_var_spec ::= global_var_list | [global_var_name] location 3741
located_var_spec_init 3742
 ::= simple_spec_init 3743
 | subrange_spec_init 3744
 | enumerated_spec_init 3745
 | array_spec_init 3746
 | initialized_structure 3747
 | single_byte_string_spec 3748
 | double_byte_string_spec 3749
location ::= 'AT' direct_variable 3750
global_var_list ::= global_var_name {',' global_var_name} 3751
string_var_declaration 3752

 ::= single_byte_string_var_declaration 3753
 | double_byte_string_var_declaration 3754

single_byte_string_var_declaration 3755
 ::= var1_list ':' single_byte_string_spec 3756

single_byte_string_spec 3757
 ::= 'STRING' ['[' integer ']'] 3758
 [':=' single_byte_character_string] 3759

double_byte_string_var_declaration 3760
 ::= var1_list ':' double_byte_string_spec 3761

double_byte_string_spec 3762
 ::= 'WSTRING' ['[' integer ']'] 3763
 [':=' double_byte_character_string] 3764

incompl_located_var_declarations 3765
 ::= 'VAR' ['RETAIN'|'NON_RETAIN'] 3766
 incompl_located_var_decl '; 3767
 '{incompl_located_var_decl ';'} 3768
 'END_VAR' 3769

incompl_located_var_decl 3770
 ::= variable_name incompl_location ':' var_spec 3771

incompl_location ::= 'AT' '%' ('I' | 'Q' | 'M') '*' 3772
var_spec ::= simple_specification 3773

 | subrange_specification 3774
 | enumerated_specification 3775
 | array_specification 3776
 | structure_type_name 3777
 | 'STRING' ['[' integer ']'] 3778
 | 'WSTRING' ['[' integer ']'] 3779

— 167 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

B.2.5 Program organization units 3780

B.2.5.1 Functions 3781

SEMANTICS: see 6.5.2. 3782

NOTE 1 This syntax does not reflect the fact that each function must have at least one input declaration. 3783
NOTE 2 This syntax does not reflect the fact that edge declarations, function block references and calls are not 3784
allowed in function bodies. 3785
NOTE 3 Ladder diagrams and function block diagrams are graphically represented. The non-terminals instruc-3786
tion_list and statement_list are defined in B.3.1 and B.4.2, respectively. 3787
PRODUCTION RULES: 3788

function_name ::= standard_function_name | derived_function_name 3789
standard_function_name ::= <as defined in 6.5.2.6> 3790
derived_function_name ::= identifier 3791
function_declaration ::= 'FUNCTION' derived_function_name 3792

 [':' (elementary_type_name | derived_type_name 3793
 | 'VOID')] 3794
 { io_var_declarations 3795
 | function_var_decls } 3796
 function_body 3797
 'END_FUNCTION' 3798

io_var_declarations ::= input_declarations | output_declarations 3799
 | input_output_declarations 3800

function_var_decls ::= external_var_declarations | var_declarations 3801
function_body ::= ladder_diagram 3802

 | function_block_diagram 3803
 | instruction_list 3804
 | statement_list 3805
 | <other languages> 3806

var2_init_decl ::= var1_init_decl 3807
 | array_var_init_decl 3808
 | structured_var_init_decl 3809
 | string_var_declaration 3810

B.2.5.2 Function blocks 3811
 3812

[Editor’s note: Methods, … TBD] 3813

SEMANTICS: see 6.5.3. [and OO] 3814

NOTE 1 Ladder diagrams and function block diagrams are graphically represented as defined in 8. 3815
NOTE 2 The non-terminals sequential_function_chart, instruction_list, and statement_list are 3816
defined in B.2.6, B.3, and B.4.2, respectively. 3817
PRODUCTION RULES: 3818

function_block_type_name ::= standard_function_block_name 3819
 | derived_function_block_name 3820

standard_function_block_name ::= <as defined in 6.5.3.5> 3821
derived_function_block_name ::= identifier 3822
function_block_declaration ::= 'FUNCTION_BLOCK' derived_function_block_name 3823

 [':' (elementary_type_name 3824
 | derived_type_name | 'VOID')] 3825
 { io_var_declarations 3826
 | function_var_decls } 3827
 { io_var_declarations 3828
 | other_var_declarations } 3829
 { function_block_body } 3830
 { method ´_declarations } 3831
 'END_FUNCTION_BLOCK' 3832

— 168 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

other_var_declarations ::= external_var_declarations | var_declarations 3833
 | retentive_var_declarations 3834
 | non_retentive_var_declarations 3835
 | temp_var_decls 3836
 | incompl_located_var_declarations 3837

temp_var_decls ::= 'VAR_TEMP' 3838
 temp_var_decl ';' {temp_var_decl ';'} 3839
 'END_VAR' 3840

non_retentive_var_declarations 3841
 ::= 'VAR' 'NON_RETAIN' 3842
 var_init_decl ';' {var_init_decl ';'} 3843
 'END_VAR' 3844

function_block_body ::= sequential_function_chart 3845
| ladder_diagram 3846
| function_block_diagram 3847
| instruction_list 3848
| statement_list 3849
| <other languages> 3850
| empty body 3851

B.2.5.3 Programs 3852

SEMANTICS: 3853

PRODUCTION RULES: 3854

method_declarations ::= 'METHOD' 3855
 declarations 3856
 function_body 3857
 'Method_END' 3858

program_type_name :: = identifier 3859
program_declaration ::= 'PROGRAM' program_type_name 3860

 { io_var_declarations | other_var_declarations 3861
 | located_var_declarations 3862
 | program_access_decls } 3863
 function_block_body 3864
 'END_PROGRAM' 3865

program_access_decls ::= 'VAR_ACCESS' 3866
 program_access_decl';' {program_access_decl';' } 3867
 'END_VAR' 3868

program_access_decl ::= access_name ':' symbolic_variable ':' 3869
 non_generic_type_name [direction] 3870

B.2.6 Sequential function chart elements 3871

SEMANTICS:. The use of function block diagram networks and ladder diagram rungs, denoted 3872
by the non-terminals fbd_network and rung, respectively, for the expression of transition 3873
conditions shall be as defined in 6.6.3. 3874

NOTE 1 The non-terminals simple_instruction_list and expression are defined in B.3.1 and B.4.1, re-3875
spectively. 3876

NOTE 2 The term [transition_name] can only be used in the production for transition when feature #7 in 3877
Table 49 is supported. The resulting production is the textual equivalent of this feature. 3878

PRODUCTION RULES: 3879

sequential_function_chart 3880
 ::= sfc_network {sfc_network} 3881

sfc_network ::= initial_step {step | transition | action} 3882
initial_step ::= 'INITIAL_STEP' step_name ':' 3883

 {action_association ';'} 'END_STEP' 3884
step ::= 'STEP' step_name ':' {action_association ';'} 3885

 'END_STEP' 3886

— 169 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

step_name ::= identifier 3887
action_association ::= action_name '(' [action_qualifier] 3888

 {',' indicator_name} ')' 3889
action_name ::= identifier 3890
action_qualifier ::= 'N' | 'R' | 'S' | 'P' | timed_qualifier ',' action_time 3891
timed_qualifier ::= 'L' | 'D' | 'SD' | 'DS' | 'SL' 3892
action_time ::= duration | variable_name 3893
indicator_name ::= variable_name 3894
transition ::= ‘TRANSITION’ [transition_name] 3895

 ['(' 'PRIORITY' ':=' integer ')'] 3896
 'FROM' steps 'TO' steps transition_condition 3897
 'END_TRANSITION' 3898

transition_name ::= identifier 3899
steps ::= step_name 3900

 | '(' step_name ',' step_name {',' step_name} ')' 3901
transition_condition 3902

 ::= ':' simple_instruction_list | ':=' expression ';' 3903
 | ':' (fbd_network | rung) 3904

action ::= 'ACTION' action_name ':'function_block_body 'END_ACTION' 3905

B.2.7 Configuration elements 3906

SEMANTICS: see 6.7. 3907

NOTE This syntax does not reflect the fact that location assignments are only allowed for references to variables 3908
which are marked by the asterisk notation at type declaration level. 3909

PRODUCTION RULES: 3910

configuration_name ::= identifier 3911
resource_type_name ::= identifier 3912
configuration_declaration ::= 3913

'CONFIGURATION' configuration_name 3914
 [global_var_declarations] 3915
 (single_resource_declaration 3916
 | (resource_declaration {resource_declaration})) 3917
 [access_declarations] 3918
 [instance_specific_initializations] 3919
'END_CONFIGURATION' 3920

resource_declaration ::= 3921
'RESOURCE' resource_name 'ON' resource_type_name 3922
 [global_var_declarations] 3923
 single_resource_declaration 3924
 'END_RESOURCE' 3925

single_resource_declaration ::= 3926
{task_configuration ';'} 3927
program_configuration ';' 3928
{program_configuration ';'} 3929

resource_name ::= identifier 3930
access_declarations ::= 3931

'VAR_ACCESS' 3932
 access_declaration ';' 3933
 {access_declaration ';'} 3934
'END_VAR' 3935

access_declaration ::= access_name ':' access_path ':' non_generic_type_name 3936
[direction] 3937

access_path ::= [resource_name '.'] direct_variable 3938
| [resource_name '.'] [program_name '.'] 3939
 {fb_name'.'} symbolic_variable 3940

— 170 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

global_var_reference ::= 3941
[resource_name '.'] global_var_name ['.' structure_element_name] 3942

access_name ::= identifier 3943
program_output_reference ::= program_name '.' symbolic_variable 3944
program_name ::= identifier 3945
direction ::= 'READ_WRITE' | 'READ_ONLY' 3946
task_configuration ::= 'TASK' task_name task_initialization 3947
task_name := identifier 3948
task_initialization ::= 3949

'(' ['SINGLE' ':=' data_source ','] 3950
 ['INTERVAL' ':=' data_source ','] 3951
 'PRIORITY' ':=' integer ')' 3952

data_source ::= constant_expression | global_var_reference 3953
| program_output_reference | direct_variable 3954

program_configuration ::= 3955
'PROGRAM' [RETAIN | NON_RETAIN] 3956
 program_name ['WITH' task_name] ':' program_type_name 3957
 ['(' prog_conf_elements ')'] 3958

prog_conf_elements ::= prog_conf_element {',' prog_conf_element} 3959
prog_conf_element ::= fb_task | prog_cnxn 3960
fb_task ::= fb_name 'WITH' task_name 3961
prog_cnxn ::= symbolic_variable ':=' prog_data_source 3962

| symbolic_variable '=>' data_sink 3963
prog_data_source ::= 3964

constant_expression | enumerated_value | global_var_reference 3965
| direct_variable 3966

data_sink ::= global_var_reference | direct_variable 3967
instance_specific_initializations ::= 3968

'VAR_CONFIG' 3969
 instance_specific_init ';' 3970
 {instance_specific_init ';'} 3971
'END_VAR' 3972

instance_specific_init ::= 3973
resource_name '.' program_name '.' {fb_name '.'} 3974
((variable_name [location] ':' located_var_spec_init) | 3975
 (fb_name ':' function_block_type_name ':=' structure_initialization)) 3976

B.3 Language IL (Instruction List) 3977

B.3.1 Instructions and operands 3978

PRODUCTION RULES: 3979

instruction_list ::= il_instruction {il_instruction} 3980
il_instruction ::= [label':'] 3981

[il_simple_operation 3982
 | il_expression 3983
 | il_jump_operation 3984
 | il_fb_call 3985
 | il_formal_funct_call 3986
 | il_return_operator] EOL {EOL} 3987

label ::= identifier 3988
il_simple_operation ::= (il_simple_operator [il_operand]) 3989

| (function_name [il_operand_list]) 3990
il_expression ::= il_expr_operator '(' [il_operand] EOL {EOL} 3991

[simple_instr_list] ')' 3992
il_jump_operation ::= il_jump_operator label 3993

— 171 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

il_fb_call ::= il_call_operator fb_name ['(' 3994
(EOL {EOL} [il_param_list]) | [il_operand_list] ')'] 3995

il_formal_funct_call ::= function_name '(' EOL {EOL} [il_param_list] ')' 3996
il_operand ::= constant_expression | variable | enumerated_value 3997
il_operand_list ::= il_operand {',' il_operand} 3998
simple_instr_list ::= il_simple_instruction {il_simple_instruction} 3999
il_simple_instruction ::= 4000

(il_simple_operation | il_expression | il_formal_funct_call) EOL {EOL} 4001
il_param_list ::= {il_param_instruction} il_param_last_instruction 4002
il_param_instruction ::= (il_param_assignment | il_param_out_assignment) ',' 4003

EOL {EOL} 4004
il_param_last_instruction ::= 4005

(il_param_assignment | il_param_out_assignment) EOL {EOL} 4006
il_param_assignment ::= il_assign_operator (il_operand | ('(' EOL {EOL} sim-4007

ple_instr_list ')')) 4008
il_param_out_assignment ::= il_assign_out_operator variable 4009

B.3.2 Operators 4010

SEMANTICS: see 7.2. This syntax does not reflect the possibility for typing IL operators as 4011
noted in Table 60. 4012

PRODUCTION RULES: 4013

il_simple_operator ::= 'LD' | 'LDN' | 'ST' | 'STN' | 'NOT' | 'S'| 'R' | 'S1' | 4014
'R1' | 'CLK' | 'CU' | 'CD' | 'PV'| 'IN' | 'PT' | il_expr_operator 4015

il_expr_operator ::= 'AND' | '&' | 'OR' | 'XOR' | 'ANDN' | '&N' | 'ORN' 4016
| 'XORN' | 'ADD' | 'SUB' | 'MUL' | 'DIV' | 'MOD' | 'GT' | 'GE' | 'EQ ' 4017
| 'LT' | 'LE' | 'NE' 4018

il_assign_operator ::= variable_name':=' 4019
il_assign_out_operator ::= ['NOT'] variable_name'=>' 4020
il_call_operator ::= 'CAL' | 'CALC' | 'CALCN' 4021
il_return_operator ::= 'RET' | 'RETC' | 'RETCN' 4022
il_jump_operator ::= 'JMP' | 'JMPC' | 'JMPCN' 4023

B.4 Language ST (Structured Text) 4024

B.4.1 Expressions 4025
SEMANTICS: these definitions have been arranged to show a top-down derivation of expres-4026

sion structure. The precedence of operations is then implied by a “bottom-up” reading of the 4027
definitions of the various kinds of expressions. Further discussion of the semantics of these 4028
definitions is given in 7.3.2. See 6.5.2.2 for details of the semantics of function calls. 4029

PRODUCTION RULES: 4030

expression ::= xor_expression {'OR' xor_expression} 4031
xor_expression ::= and_expression {'XOR' and_expression} 4032
and_expression ::= comparison {('&' | 'AND') comparison} 4033
comparison ::= equ_expression { ('=' | '<>') equ_expression} 4034
equ_expression ::= add_expression {comparison_operator add_expression} 4035
comparison_operator 4036

 ::= '<' | '>' | '<=' | '>=' 4037
add_expression ::= term {add_operator term} 4038
add_operator ::= '+' | '-' 4039

— 172 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

term ::= power_expression {multiply_operator power_expression} 4040
multiply_operator ::= '*' | '/' | 'MOD' 4041
power_expression ::= unary_expression {'**' unary_expression} 4042
unary_expression ::= [unary_operator] primary_expression 4043
unary_operator ::= '-' | 'NOT' 4044
primary_expression 4045

 ::= constant | enumerated_value | variable 4046
 | '(' expression ')' 4047
 | funtion_name 4048
 '('[param_assignment {',' param_assignment} '])' 4049

primary_constant_expression 4050
 ::= constant | enumerated_value | variable 4051
 | '(' expression ')' 4052

B.4.2 Statements 4053

B.4.2.1 General 4054

SEMANTICS: see 6.7.3. 4055

PRODUCTION RULE: 4056

statement_list ::= statement ';' {statement ';'} 4057
statement ::= NIL | assignment_statement 4058

 | subprogram_control_statement | selection_statement 4059
 | iteration_statement 4060

B.4.2.2 Assignment statements 4061

SEMANTICS: see 7.3.2.2. 4062

PRODUCTION RULE: 4063

assignment_statement ::= variable ':=' expression 4064

B.4.2.3 Subprogram control statements 4065

SEMANTICS: see 7.3.2.3. 4066

PRODUCTION RULES: 4067

subprogram_control_statement 4068
 ::= fb_invocation | 'RETURN' 4069

fb_invocation ::= fb_name '(' [param_assignment 4070
 {',' param_assignment}] ')' 4071

param_assignment ::= ([variable_name ':='] expression) 4072
 | (['NOT'] variable_name '=>' variable) 4073

B.4.2.4 Selection statements 4074

SEMANTICS: see 7.3.2.4. 4075

PRODUCTION RULES: 4076

selection_statement ::= if_statement | case_statement 4077
if_statement ::= 4078

'IF' expression 'THEN' statement_list 4079
 {'ELSIF' expression 'THEN' statement_list} 4080
 ['ELSE' statement_list] 4081
'END_IF' 4082

— 173 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

case_statement ::= 'CASE' expression 'OF' 4083
 case_element 4084
 {case_element} 4085
 ['ELSE' statement_list] 4086
 'END_CASE' 4087

case_element ::= case_list ':' statement_list 4088
case_list ::= case_list_element {',' case_list_element} 4089
case_list_element ::= subrange | signed_integer | enumerated_value 4090

 | identifier 4091

B.4.2.5 Iteration statements 4092

SEMANTICS: see 7.3.2.5. 4093

PRODUCTION RULES: 4094

iteration_statement ::= for_statement | while_statement | repeat_statement 4095
 | exit_statement | continue_statement 4096

for_statement ::= 'FOR' control_variable ':=' for_list 4097
 'DO' statement_list 'END_FOR' 4098

control_variable ::= identifier 4099
for_list ::= expression 'TO' expression ['BY' expression] 4100
while_statement ::= 'WHILE' expression 'DO' statement_list 'END_WHILE' 4101
repeat_statement ::= 'REPEAT' statement_list 'UNTIL' expression 4102

'END_REPEAT' 4103
exit_statement ::= 'EXIT' 4104
continue_statement ::= 'CONTINUE' 4105

— 174 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Annex C 4106
(normative) 4107

Delimiters and keywords 4108

The usages of delimiters and keywords in this standard is summarized in tables C.1 and C.2. 4109
National standards organizations can publish tables of translations for the textual portions of 4110
the delimiters listed in table C.1 and the keywords listed in table C.2. 4111

[Editor’s note: Subclause numbers and links not yet complete.] 4112

Table C.1 - Delimiters

Delimiters Subclause Usage

Space 6.1.4 As specified in 6.1.4.

(* 6.1.5 Begin comment

*) End comment

// Single line comment

+ 6.2.1 Leading sign of decimal literal

 7.3.2 Addition operator

 6.2.1 Leading sign of decimal literal

- 6.2.3.2 Year-month-day separator

 7.3.1 Subtraction, negation operator

 8.1.2 Horizontal line

6.2.1 Based number separator

 6.2.3 Time literal separator

. 6.2.1 Integer/fraction separator

 6.4.2.2 Hierarchical address separator

 6.4.2.3 Structure element separator

 6.5.3.2 Function block structure separator

e or E 6.2.1 Real exponent delimiter

' 6.2.2 Start and end of character string

$ 6.2.2 Start of special character in strings

T#, D, H, M, S,
MS, DATE#,
D#,TOD#,DT#,
TIME_OF_DAY#,
DATE_AND_TIME#

 6.2.3 Time literal delimiters

 6.2.3.2 Time of day separator

 6.2.3.1 Type name/specification separator

 6.4.3 Variable/type separator

 6.6.2 Step name terminator

: 6.7.2 RESOURCE name/type separator

 6.7.2 PROGRAM name/type separator

 6.7.2
 7.2.1
 8.2.1

Access name/path/type separator
Instruction label terminator
Network label terminator

:=

 6.3.3
 6.7.2
 7.3.2.2

Initialization operator
Input connection operator
Assignment operator

() 6.3.4.2 Enumeration list delimiters

— 175 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

() 6.3.3.1 Subrange delimiters

[] 6.4.1.2 Array subscript delimiters

[] 6.4.3.1 String length delimiters

() 6.4.3.2 Multiple initialization

() 7.2.2 Instruction List modifier/operator

() 7.3.1 Function arguments

() 7.3.1 Subexpression hierarchy

() 7.3.2.3 Function block input list delimiters

 6.3.3.1 Enumeration list separator

 6.3.3.2 Initial value separator

 6.4.1 Array subscript separator

 6.4.2 Declared variable separator

, 6.5.3.2 Function block initial value separator

 6.5.3.2 Function block input list separator

 7.3.2.3 Operand list separator

 7.3.2.3 Function argument list separator

 3.3.2.3 CASE value list separator

; 2.3.3.1 Type declaration separator

 3.3 Statement separator

.. 2.3.3.1 Subrange separator

 7.3.2.4 CASE range separator

% 2.4.1.1 Direct representation prefix

=> 6.7.2 Output connection operator

**, NOT, *, /,
MOD, +, -, <, >,
<= >=, =, <>, &,
AND, XOR, OR

7.3.1 Infix operators

| or ! 8.1.2 Vertical lines

 4113

— 176 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

 4114

Table C.2 - Keywords

Keywords Subclause

ACTION...END_ACTION 6.6.4.2

ARRAY...OF 6.3.3.1

AT 6.4.3

CASE...OF...ELSE...END_CASE 7.3.2.4

CONFIGURATION...END_CONFIGURATION 6.7.2

CONSTANT 6.4.3

Data type names 6.3

EN, ENO 6.5.2.3, 6.5.3.3a

EXIT 7.3.2.5

FALSE 6.2.1

F_EDGE 6.5.3.4

FOR...TO...BY...DO...END_FOR 7.3.2.5

FUNCTION...END_FUNCTION 6.5.2.4

Function names 2.5.1

FUNCTION_BLOCK...END_FUNCTION_BLOCK 2.5.2.2

Function Block names 6.5.2

METHOD...END_METHOD

THIS, SUPER 6.5.4.4.5

INTERFACE...END_INTERFACE, IMPLEMENTS, EXTENDS xxx

IF...THEN...ELSIF...ELSE...END_IF 7.3.2.4

INITIAL_STEP...END_STEP 6.6.2

NOT, MOD, AND, XOR, OR 7.3.1

PROGRAM...WITH... 6.7.2

PROGRAM...END_PROGRAM 6.5.4

R_EDGE 6.5.3.4

READ_ONLY, READ_WRITE 6.7.2

REPEAT...UNTIL...END_REPEAT 7.3.2.5

RESOURCE...ON...END_RESOURCE 6.7.2

RETAIN, NON_RETAIN 6.4.3

RETURN 7.3.2.3

STEP...END_STEP 6.6.2

STRUCT...END_STRUCT 6.3.3.1

TASK 6.7.3

TRANSITION...FROM...TO...END_TRANSITION 6.6.3

TRUE 6.2.1

TYPE...END_TYPE 6.3.3.1

VAR...END_VAR 6.4.3

VAR_INPUT...END_VAR 6.4.3

VAR_OUTPUT...END_VAR 6.4.3

VAR_IN_OUT...END_VAR 6.4.3

— 177 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

VAR_TEMP...END_VAR 6.4.3

VAR_EXTERNAL...END_VAR 2.4.3

VAR_ACCESS...END_VAR 6.7.2

VAR_CONFIG...END_VAR 6.7.2

VAR_GLOBAL...END_VAR 6.7.2

WHILE...DO...END_WHILE 7.3.2.5

WITH 6.5.3.4

— 178 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Annex D 4115
(normative) 4116

Implementation dependencies 4117

The implementation dependencies defined in this standard, and the primary reference clause 4118
for each, are listed in Table D.1. 4119

NOTE Other implementation dependencies such as the accuracy, precision and repeatability of timing and exe-4120
cution control features may have significant effects on the portability of programs but are beyond the scope of this 4121
part of IEC 61131. 4122
Editor’s note: Subclause numbers and links not yet complete.] 4123

Table D.1 - Implementation dependencies

Subclause Parameters

6.1.2 Maximum length of identifiers

6.1.6 Syntax and semantics of pragmas

6.2.2 Syntax and semantics for the use of the double-quote character when a particular implementation
supports feature #4 but not feature #2 of Table 6.

6.3.1 Range of values and precision of representation for variables of type TIME, DATE,
TIME_OF_DAY and DATE_AND_TIME

 Precision of representation of seconds in types TIME, TIME_OF_DAY and DATE_AND_TIME

6.3.3.1

Maximum number of enumerated values
Maximum number of array subscripts
Maximum array size
Maximum number of structure elements
Maximum structure size
Maximum range of subscript values
Maximum number of levels of nested structures

6.3.3.2 Default maximum length of STRING and WSTRING variables
Maximum allowed length of STRING and WSTRING variables

6.4.1.1 Maximum number of hierarchical levels
Logical or physical mapping

6.4.2 Initialization of system inputs

6.4.3 Maximum number of variables per declaration
Effect of using AT qualifier in declaration of function block instances
Warm start behavior if variable is declared as neither RETAIN nor NON_RETAIN

6.5 Information to determine execution times of program organization units

6.5.2.3 Values of outputs when ENO is FALSE

2.5.2.4 Maximum number of function specifications

2.5.1.5 Maximum number of inputs of extensible functions

6.5.2.6.2 Effects of type conversions on accuracy
Error conditions during type conversions

6.5.2.6.3 Accuracy of numerical functions

2.5.2.6.7 Effects of type conversions between time data types and other data types not defined in table 34

6.5.3 Maximum number of function block specifications and instantiations

6.5.3.3 Function block input variable assignment when EN is FALSE

6.5.3.5.4 Pvmin, Pvmax of counters

6.5.3.5.5 Effect of a change in the value of a PT input during a timing operation

6.5.4 Program size limitations

6.6.2 Precision of step elapsed time
Maximum number of steps per SFC

6.6.3 Maximum number of transitions per SFC and per step

— 179 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

6.6.4.3 Maximum number of action blocks per step

6.6.4.6 Access to the functional equivalent of the Q or A outputs

6.6.5 Transition clearing time
Maximum width of diverge/converge constructs

6.7.2 Contents of RESOURCE libraries

6.7.2 Effect of using READ_WRITE access to function block outputs

6.7.3 Maximum number of tasks
Task interval resolution

7.3.1 Maximum length of expressions

7.3.2 Maximum length of statements

7.3.2.4 Maximum number of CASE selections

7.3.2.5 Value of control variable upon termination of FOR loop

8.1.1 Restrictions on network topology

8.1.4 Evaluation order of feedback loops

— 180 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Annex E 4124
(normative) 4125

Error conditions 4126

The error conditions defined in this standard, and the primary reference clause for each, are 4127
listed in table E.1. These errors may be detected during preparation of the program for execu-4128
tion or during execution of the program. The manufacturer shall specify the disposition of these 4129
errors according to the provisions of 5.1. 4130

[Editor’s note: Subclause numbers and links not yet complete.] 4131

Table E.1 - Error conditions

Subclause Error conditions

6.3.3.1 Ambiguous enumerated value

6.3.3.1 Value of a variable exceeds the specified subrange

6.4.1.1 Missing configuration of an incomplete address specification ("*" notation)

6.4.2.3 Invalid subscript value

6.4.2.4 Invalid modification of an ARRAY element

6.4.3 Attempt by a program organization unit to modify a variable which has been declared CONSTANT or
VAR_INPUT

xxx Usage of a non CONSTANT variable in a constant expression

6.4.3 Attempt by a program organization unit to modify a variable which has been declared CONSTANT

6.4.3 Declaration of a variable as VAR_GLOBAL CONSTANT in a containing element having a contained
element in which the same variable is declared VAR_EXTERNAL without the CONSTANT qualifier.

6.5.2 Improper use of directly represented or external variables in functions

6.5.2.4 A VAR_IN_OUT variable is not “properly mapped”

6.5.2.4 Ambiguous value caused by a VAR_IN_OUT connection

6.5.2.6.2 Type conversion errors

6.5.2.6.3 Numerical result exceeds range for data type
Division by zero

6.5.2.6.4 N input is less than zero in a bit-shift function

6.5.2.6.5 Mixed input data types to a selection function
Selector (K) out of range for MUX function

6.5.2.6.6 Invalid character position specified
Result exceeds maximum string length
ANY_INT input is less than zero in a string function

6.5.2.6.7 Result exceeds range for data type

6.5.3.4 No value specified for a function block instance used as input variable

6.5.3.4 No value specified for an in-out variable

6.6.2 Zero or more than one initial steps in SFC network
User program attempts to modify step state or time

6.6.3 Side effects in evaluation of transition condition

6.6.4.2 Modification of a Boolean action from outside its SFC

6.6.4.6 Action control contention error

6.6.5 Simultaneously true, non-prioritized transitions in a selection divergence
Unsafe or unreachable SFC

6.7.2 Data type conflict in VAR_ACCESS

6.7.3 A task fails to be scheduled or to meet its execution deadline

— 181 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

7.2.2 Numerical result exceeds range for data type
Current result and operand not of same data type

7.3.1 Division by zero
Numerical result exceeds range for data type
Invalid data type for operation

7.3.2.2 Return from function without value assigned

7.3.2.5 Iteration fails to terminate

8.1.1 Same identifier used as connector label and element name

8.1.4 Uninitialized feedback variable

 4132
 4133
 4134

 4135

— 182 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Annex F 4136
(informative) 4137

Reference character set 4138

NOTE 1 The contents of the most recent edition of “table 1Row 00: ISO-646 IRV” of ISO/IEC 10646-1 are normative 4139
for the purposes of this standard. The reference character set is reproduced here for information only. 4140
NOTE 2 In variables of type STRING, the individual byte encodings of the characters in this reference character set 4141
are as given in table H.2. In variables of type WSTRING, the numerical equivalent of individual 16-bit word encodings 4142
are also as given in table H.2. 4143

Table G.1 - Character representations 4144

 First hexadecimal digit

Second hexadecimal digit 2 3 4 5 6 7

0 0 @ P ` p

1 ! 1 A Q a q

2 " 2 B R b r

3 # 3 C S c s

4 $ 4 D T d t

5 % 5 E U e u

6 & 6 F V f v

7 ' 7 G W g w

8 (8 H X h x

9) 9 I Y i y

A * : J Z j z

B + ; K [k {

C , < L \ l |

D - = M] m }

E . > N ^ n ~

F / ? O _ o

— 183 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

Table G.2 - Character encodings

dec hex Name dec hex Name
032 20 SPACE 080 50 LATIN CAPITAL LETTER P
033 21 EXCLAMATION MARK 081 51 LATIN CAPITAL LETTER Q
034 22 QUOTATION MARK 082 52 LATIN CAPITAL LETTER R
035 23 NUMBER SIGN 083 53 LATIN CAPITAL LETTER S
036 24 DOLLAR SIGN 084 54 LATIN CAPITAL LETTER T
037 25 PERCENT SIGN 085 55 LATIN CAPITAL LETTER U
038 26 AMPERSAND 086 56 LATIN CAPITAL LETTER V
039 27 APOSTROPHE 087 57 LATIN CAPITAL LETTER W
040 28 LEFT PARENTHESIS 088 58 LATIN CAPITAL LETTER X
041 29 RIGHT PARENTHESIS 089 59 LATIN CAPITAL LETTER Y
042 2A ASTERISK 090 5A LATIN CAPITAL LETTER Z
043 2B PLUS SIGN 091 5B LEFT SQUARE BRACKET
044 2C COMMA 092 5C REVERSE SOLIDUS
045 2D HYPHEN-MINUS 093 5D RIGHT SQUARE BRACKET
046 2E FULL STOP 094 5E CIRCUMFLEX ACCENT
047 2F SOLIDUS 095 5F LOW LINE
048 30 DIGIT ZERO 096 60 GRAVE ACCENT
049 31 DIGIT ONE 097 61 LATIN SMALL LETTER A
050 32 DIGIT TWO 098 62 LATIN SMALL LETTER B
051 33 DIGIT THREE 099 63 LATIN SMALL LETTER C
052 34 DIGIT FOUR 100 64 LATIN SMALL LETTER D
053 35 DIGIT FIVE 101 65 LATIN SMALL LETTER E
054 36 DIGIT SIX 102 66 LATIN SMALL LETTER F
055 37 DIGIT SEVEN 103 67 LATIN SMALL LETTER G
056 38 DIGIT EIGHT 104 68 LATIN SMALL LETTER H
057 39 DIGIT NINE 105 69 LATIN SMALL LETTER I
058 3A COLON 106 6A LATIN SMALL LETTER J
059 3B SEMICOLON 107 6B LATIN SMALL LETTER K
060 3C LESS-THAN SIGN 108 6C LATIN SMALL LETTER L
061 3D EQUALS SIGN 109 6D LATIN SMALL LETTER M
062 3E GREATER-THAN SIGN 110 6E LATIN SMALL LETTER N
063 3F QUESTION MARK 111 6F LATIN SMALL LETTER O
064 40 COMMERCIAL AT 112 70 LATIN SMALL LETTER P
065 41 LATIN CAPITAL LETTER A 113 71 LATIN SMALL LETTER Q
066 42 LATIN CAPITAL LETTER B 114 72 LATIN SMALL LETTER R
067 43 LATIN CAPITAL LETTER C 115 73 LATIN SMALL LETTER S
068 44 LATIN CAPITAL LETTER D 116 74 LATIN SMALL LETTER T
069 45 LATIN CAPITAL LETTER E 117 75 LATIN SMALL LETTER U
070 46 LATIN CAPITAL LETTER F 118 76 LATIN SMALL LETTER V
071 47 LATIN CAPITAL LETTER G 119 77 LATIN SMALL LETTER W
072 48 LATIN CAPITAL LETTER H 120 78 LATIN SMALL LETTER X
073 49 LATIN CAPITAL LETTER I 121 79 LATIN SMALL LETTER Y
074 4A LATIN CAPITAL LETTER J 122 7A LATIN SMALL LETTER Z
075 4B LATIN CAPITAL LETTER K 123 7B LEFT CURLY BRACKET
076 4C LATIN CAPITAL LETTER L 124 7C VERTICAL LINE
077 4D LATIN CAPITAL LETTER M 125 7D RIGHT CURLY BRACKET
078 4E LATIN CAPITAL LETTER N 126 7E TILDE
079 4F LATIN CAPITAL LETTER O

 4145

END 4146

— 184 —

E DIN IEC 61131-3:2009-12 ��������	��

 B55EB1B3E14C22109E918E8EA43EDB30F09DCEB7EF8AD9

N
o

rm
C

D
 -

 S
ta

n
d

 2
01

0-
04

		2009-11-26T11:06:50+0000
	10787 Berlin, Germany
	DIN Deutsches Institut fuer Normung e. V.
	Dokument ist zertifiziert

